Tag Archives: science history

粘弹性的认识历史(一)

前段时间做过一些关于粘弹性(viscoelasticity)的研究历史的资料调查,就在此作一些不完整的总结。

实际上Maria Grazia Ianniello作了很好的总结工作​(Ianniello 1993)​​*​,我写的内容大部分都是直接来自这里。其实我也独立地评估过她的论文。我自己看过一部分的历史文献的原文(见此文),再去看Ianniello对这些原文的解读,觉得她关注细节跟我一样多,甚至看得和想得比我更仔细。科学哲学层面上的关照角度也和我很接近,因此我很信赖这个工作。另外还有一篇更早些的科学史论文​(Dörries 1991)​,从广义的“余效”(Nachwirking)与“迟滞”(histeresis)概念的角度回顾了19世纪的物理学史,但是描述不如Ianniello的文章详细。除了这些科学史研究者的论文外,我在这里提一些流变学家自己做的历史总结。​(Tanner and Walters 1998)​的这本书是整个流变学的一个大的历史总结,是一个很伟大的工程,但是难免也流于泛泛,可以作为一个粗略的提纲和参考文献来参考。相比之下,Hershel Markovitz做过的很多流变学史总结更加问题导向因而也更富有洞见​(Markovitz 1968, 1977, 1985)​​(Doraiswamy 2002)​也做了一个很全面的历史溯源资料总结。​(Tanner 2002)​总结了流变测量学中正弦测试方法的历史。

已故的流变学家郑融老师在科学网上的博客写满了脍炙人口的流变学史话。

1. 今天知道的“粘弹性”

“粘弹性”(viscoelasticity)是流变学或力学方面的词。 Ferry对线性粘弹性的宏观唯象理论模型和实验方法进行了完整的总结​(Ferry 1980)​。而非线性粘弹性就是整个流变学的研究对象,其现象学模型和实验方法可见于各个流变学教材。值提一提的是振荡测试在非线性响应中的描述框架在流变学中的应用是“大幅振荡剪切”(large amplitude oscillatory shear,LAOS)。这方面最近的大型综述​(Hyun et al. 2011)​已经很早了,其之后值得关注的相关综述有​(Bird and Giacomin 2016)​​(Voigtmann 2014)​

事实上粘弹性的现象在力学之外有更一般的本质,它实质上是一种松弛(弛豫)现象​†​,在电磁学中也很普遍。因此Oppenheim的经典教科书​(Oppenheim et al. 1997)​中的很多方法跟粘弹性现象学是相通的。例如线性粘弹性的通用本构——Boltzmann方程就是一个线性时不变系统的卷积式。在后面的历史介绍中我们将会看到,粘弹性的认识史跟电磁学和电信技术的发展是密切相关的。一领域的概念或方法延用于另一领域的情况很常见,且这种情况一直延续到今天。

至于宏观粘弹性或其他宏观性质的弛豫现象的微观本质,则是非平衡态统计力学提供的。可以用一句话说宏观性质的弛豫现象的微观本质就是热运动。具体地,线性响应理论是线性粘弹性的统计基础。这方面内容可以参考​(Evans and Morriss 2008)​​(Kreuzer 1981)​

上述引用的资料代表了我们今天对粘弹性的认识。在回顾粘弹性的研究历史的时候,我们就自然会关注当时的人从当时的数学和物理学基础和实验现象所能形成的最初认识跟今天认识的差异和差距是怎样的?之后是如何“松弛”到今天的认识的?

2. 连续介质力学与热力学

我们今天的认识体系中,粘弹性现象是对经典的虎克弹性和牛顿粘性的推广。从更大的角度看,粘弹性是连续介质力学中的特殊本构关系。今天如果我们要讲述粘弹性,我们会希望听众已经对上述这些背景有所了解​‡​

首先是连续介质力学。欧拉把牛顿运动定律推广至连续介质,并推导了刚体和理想流体的方程​(Truesdell 1960a, 1968)​​§​。这大概是十八世纪中叶的事情。

关于能量守恒,也许伯努利的工作可以作为一种代表,以他1738年发表的Hydrodynamica为标志​(Truesdell 1960a, 1968)​。伯努利方程,就是机械能与重力势能之间的能量守恒。仅考虑这两种能量之间的守恒是经典力学发展过程中的一个主要的问题形式。热力学意义上的能量守恒(即作为公设的热力学第一定律),则与热的本质问题和第二定律的认识等一同纠缠到19世纪中期才算确立。

虽然,在最初发现和理解粘弹性现象,都是来自简单形变的恒温(以当时的水平)力学实验,并不必要求使用今天解决热力学与连续介质力学耦合问题的范式。但是温度对当时研究的各类物理过程的影响是当时早已知晓的。温度本身以及连带的热的本质的认识状况,也影响了当时关于一切宏观物理现象——具体到本文就是粘弹性现象——的温度依赖性的本质的认识状况。在此也需要顺带地(却并非次要地)提到统计力学的发展以及分子论与唯能论之间的争论。统计热力学与粘弹性的认识几乎同时或略晚些(以Boltzmann的加入为标志),而分子论和唯能论的认识,大致上要到Perrin的布朗运动工作证明了分子的存在才算完结,晚于对粘弹性现象的关注近半个世纪​(Newburgh et al. 2006)​。因此,关注当时的热力学和物质的微观组成的认知如何影响对粘弹性现象的本质的论断这个问题也是有趣的。关于热力学的历史的文献资料很多了,因为这是科学史方面的重头戏,例如参考​(Truesdell and Bharatha 1977; Chang 2007)​

3. 虎克固体与牛顿流体

其实固体的弹性形变和流体的粘度可以说是人类很早就知道。弓的使用与完善是前者的一个例子。而后者则可见于对水钟的校正,公元前1000年以前的中国和埃及都有记载,知道冬天水要加热钟才准。大约公元前99~55年罗马诗人卢克莱修的长诗《物性论》就对流体的粘度作出了近乎现代的描述​(1930)​​¶​

牛顿在其《原理》中提到了流体的粘度公式,但他不是使用“粘度”(viscosity)一词。牛顿在《原理》中的推导只是基于猜想,现在不知道他是不是亲自做过实验验证,只知道他是为了反对法国的笛卡尔关于以太旋涡的理论而做的推导。后世用他的名字命名为“牛顿液体”(Newtonian liquid),始作恿者应该是​(Reiner 1929)​​#​。牛顿只作了今天看来是简单剪切流场的陈述,即“与相对速度成正比”的结果。今天知道的三维本构关系是Navier(不可压缩流体)和Stokes(体积粘度)的贡献:

\mathbf{T}=-p\mathbf{I}+\left(\lambda_\mathrm{V}\mathrm{tr}\mathbf{D}\right)\mathbf{I}+2\eta\mathbf{D}

因此​(Coleman et al. 1966)​使用Navier–Stokes fluid一词指代满足上述本构关系的流体,也许更为恰当。今天所说的“牛顿流体”则可能更强调粘度η是常数,但这只是流体满足上述本构关系的必要非充分条件。

虎克的关于弹簧拉伸的弹性定律是他在1676年通过一个拉丁语字迷说出来的,两年后才公开迷底。波义耳在对气体的研究中也提到了气体的线性弹性定律。与牛顿流体的历史类似,关于弹性也是从“正比关系”的认识起始的。与剪切粘度的概念相对应的是我们今天知道的杨氏模量,但这不是Young首次提出的。模量的概念是三个伯努利(James、John、Daniel)和欧拉18世纪确立的。线性弹性的本构关系:

\mathbf{T}=\left(\lambda_\mathrm{E}\mathrm{tr}\mathbf{e}\right)\mathbf{I}+2\mu\mathbf{e}

是19世纪柯西和Navier几乎同时确立的。Navier是基于分子的微观假设推导的流体和弹性体本构​(Truesdell 1960b)​。同样地,我们要区分“模量是常数”和上述本构关系的满足这两种陈述。

在本构关系的层面上实验验证上面两个模型的工作则一直延续到19世纪末​(Tanner and Walters 1998)​

从流变学的角度,对于虎克与牛顿两个经典极限行为的关注点应该是它们的正比例行为(线性)和即时性(即不依赖历史的性质)。在回顾粘弹性研究历史的时候就会关心当时的科学家对违背这两方面行为的新现象的最初描述。

2. 弹性余效的发现与电磁学

“粘弹性”不是这一现象最初的名称。我们认为首个正式研究粘弹性的人是 Wilhelm Weber(韦伯) 。他使用的词是Nachwirkung,译成英语是after-effect。之后的粘弹性的研究者也都一直延用这个词。欧洲大陆其他国家也一直用类似意思的词。而在英国,克劳修斯曾提出过“金属的粘度”(the viscosity of metal)一词来描述(固态)金属表现出来的粘弹性,因此今天我们使用的viscoelasticity,其实是来自英国。当然,使用这个词还受后续元件模型的流行有关。我将在后面补充粘弹性用词演变过程的一些历史资料。

Nachwirkung这个词如何译成中文?我搜到日本的论文​(岡 1971)​用“余效”这两个汉字。后来发现台湾也用了这两个字。我觉得这两个字译得不错。本文就用这个词。

事实上,韦伯发现粘弹性现象的契机也来自他专注于研究的磁现象。在当时,韦伯和高斯(Carl Friedrich Gauss)因对地磁的关注而密切联系。在他们的合作研究中,韦伯主要负责搭建测量仪器。他们的工作直接导致了麦克斯韦的电磁理论​(O’Connor and Robertson 2009)​。扭摆或扭秤(torsional pendulum/balance)是当时常用的力学测量仪器。其中丝线是扭摆的关键传感器件,它的力学性能是扭摆灵敏度和准确度的关键(后面会再说)。当时人们已经普遍知道,要改进扭摆,就要对所使用的丝线的力学性能进行专门的研究。韦伯想改用更软的蚕丝作为扭摆丝线,因而对蚕丝的力学进行研究,从而发现了“弹性余效”,发表了1835年的标志性论文​(Weber 1835)​

科学史中一件大家确认的事是,电磁学的理论化借助了力学理论。但一般说到这一点时都举麦克斯韦提出其方程组这一例子。在后面介绍粘弹性历史时我们会看到,电磁学和力学在“余效”现象的理论化上也有互相借鉴的做法。

to be continue...

  1. ​*​
    Maria Grazia Ianniello是罗马大学物理系的教授,研究主要研究物理学史。这是她的简历:https://www.phys.uniroma1.it/DipWeb/didattica/ccl/2008-09/Programmi%20LS/1012181.pdf。罗马大学物理系还有一个物理学博物馆:https://www.phys.uniroma1.it/DipWeb/museo/home.htm。
  2. ​†​
    “relaxation”在力学中常译为“松弛”,在电学中常译为“弛豫”。
  3. ​‡​
    背景的了解当然有深有浅,这无非只决定了正式介绍的深浅。这里只关心“哪些是相关背景”的划定。
  4. ​§​
    这里面还有很多其他人的贡献,例如D’Alembert关于理想流体方程的工作。我还没有认真的总结这方面历史。C. Truesdell的力学著作经常有非常详细的历史记述,因此可以找他的著作来完善这个方面。
  5. ​¶​
    据这篇Editorial所说,是Winslow Herschel引起流变学家对这段诗的重视的。后者是值得一记的流变学家,他就是Herschel–Bulkley模型的那个Herschel。我根据Wikipedia上《物性论》英语译文列表点开了其中几个19世纪的译本,都跟这篇Editorial中的英语译文不同。目前尚不知道这段英语译文来自哪个译本,但这段译文是现在所有流变学资料引用《物性论》时所用的唯一一个版本的译文。其实这段译文未必是最好的,我建议大家去找不同的译文来欣赏。例如,网上能看到的最早的译文是1683年由Thomas Creech翻译的:So thro the strayner wines with ease do flow,//But heavy oyl or stops, or runs more slow.//The reason’s this, ’cause tis of parts combin’d//Far greater, or more hookt, and closely twin’d,//Which therefore cannot be disjon’d as soon,//And thro each little passage singly run. 郑融老师在科学网上也曾赏析过此诗(http://news.sciencenet.cn/sbhtmlnews/2012/7/260857.shtm?id=260857)。我想关于此诗引发的我们对“何为现代科学”的基本科学哲学命题思考,这篇Edtorial和郑融老师的文章已经给出一切应有的启发。
  6. ​#​
    I propose to call a material that behaves according to Equation 4 a Newtonian liquid.
文献列表
  1. Bird RB, Giacomin AJ (2016) Polymer Fluid Dynamics: Continuum and Molecular Approaches. Annu Rev Chem Biomol Eng 479–507. https://doi.org/10.1146/annurev-chembioeng-080615-034536
  2. Chang H (2007) Inventing Temperature: Measurement and Scientific Progress. Oxford University Press
  3. Coleman BD, Markovitz H, Noll W (1966) Viscometric Flows of Non-Newtonian Fluids: Theory and Experiment. Springer-Verlag
  4. Doraiswamy D (2002) The Origins of Rheology: A Short Historical Excursion. Rheology Bulletin 71:7–17
  5. Dörries M (1991) Prior History and Aftereffects: Hysteresis and “Nachwirkung” in 19th-Century Physics. Historical Studies in the Physical and Biological Sciences 25–55. https://doi.org/10.2307/27757672
  6. Evans DJ, Morriss G (2008) Statistical Mechanics of Nonequilibrium Liquids, 2nd edn. Cambridge University Press
  7. Ferry JD (1980) Viscoelastic Properties of Polymers, 3rd edn. John Wiley & Sons
  8. Hyun K, Wilhelm M, Klein CO, et al (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science 1697–1753. https://doi.org/10.1016/j.progpolymsci.2011.02.002
  9. Ianniello MG (1993) Elastic Nachwirkung, Brownian Motion, and the Tide against Determinism: 1835-1920. Historical Studies in the Physical and Biological Sciences 41–100. https://doi.org/10.2307/27757712
  10. Kreuzer HJ (1981) Nonequilibrium Thermodynamics and its Statistical Foundations. Clarendon Press
  11. Markovitz H (1968) The emergence of rheology. Physics Today 23–30. https://doi.org/10.1063/1.3034918
  12. Markovitz H (1977) Boltzmann and the Beginnings of Linear Viscoelasticity. Transactions of the Society of Rheology 381–398. https://doi.org/10.1122/1.549444
  13. Markovitz H (1985) Rheology: in the Beginning. Journal of Rheology 777–798. https://doi.org/10.1122/1.549809
  14. Newburgh R, Peidle J, Rueckner W (2006) Einstein, Perrin, and the reality of atoms: 1905 revisited. American Journal of Physics 478–481. https://doi.org/10.1119/1.2188962
  15. O’Connor JJ, Robertson EF (2009) Wilhelm Eduard Weber. In: Wilhelm Weber  (1804 – 1891) – Biography – MacTutor History of Mathematics. https://mathshistory.st-andrews.ac.uk/Biographies/Weber/. Accessed 14 Aug 2021
  16. Oppenheim AV, Willsky AS, Nawab SH (1997) Signals & Systems, 2nd edn. Prentice-Hall
  17. Reiner M (1929) The General Law of Flow of Matter. Journal of Rheology 11–20. https://doi.org/10.1122/1.2116288
  18. Tanner RI (2002) Note on the beginnings of sinusoidal testing methods. Korea-Australia Rheology Journal 14:87–90
  19. Tanner RI, Walters RI (1998) Rheology: An Historical Perspective, 1st edn. Elsevier
  20. Truesdell C (1960a) A program toward rediscovering the rational mechanics of the age of reason. Arch Hist Exact Sci 1–36. https://doi.org/10.1007/bf00357393
  21. Truesdell C (1968) Essays in the History of Mechanics. Springer-Verlag, New York
  22. Truesdell C (1960b) Outline of the History of Flexible or Elastic Bodies to 1788. The Journal of the Acoustical Society of America 1647–1656. https://doi.org/10.1121/1.1907980
  23. Truesdell CA, Bharatha S (1977) The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines. Spinger-Verlag, Berlin
  24. Voigtmann T (2014) Nonlinear glassy rheology. Current Opinion in Colloid & Interface Science 549–560. https://doi.org/10.1016/j.cocis.2014.11.001
  25. Weber W (1835) Ueber die Elasticität der Seidenfäden. Ann Phys Chem 247–257. https://doi.org/10.1002/andp.18351100204
  26. 岡小天 (1971) 高分子物理の歴史. 高分子 20:177–189. https://doi.org/10.1295/kobunshi.20.177
  27. (1930) Lucretius. Journal of Rheology 440–440. https://doi.org/10.1122/1.2116337

科学研究与神创论信仰:Henri Devaux

这两天在查阅关于蛋白质分子在液液界面吸附的历史文献。关于最早做这个实验的人,很多文献都指向了Henri Devaux,界面物理化学的先驱。

一、Devaux研究单分子膜

Devaux原本是植物学家,但是后来对当时主要由物理学家关心的表面科学产生了兴趣,并做了重要的工作。但他同时也是个虔诚的福音派基督徒。

我想查阅的是他在1903年发表的第一篇关于清蛋白界面吸附的工作,但是这个工作发表的地方现在网上已经找不到了,甚至找不到这个期刊的介绍。我能找到的只有他在1931年对自己在表面科学方面的研分工作的总结,发表在Journal de Physique et Le Radium上[1]。由于是法语文献,我只把大标题小标题、图题、摘要和结论等部分用谷歌翻译DeepL翻译粗略读了一下。我发现他在最后总结里阐述了自己的研究工作与荣誉主的关系。

在此我补充一些背景知识。Devaux在这篇1931年的论文里报道的是表面活性剂分子在液体表面成形成单分子膜的实验。他特别研究了这种单分子膜的力学响应,发同这类单分子膜也可以显示出液体或固体的特征。因此这也可以视为界面流变学的开山之作。这种表面化学实验可以在厨房做,例如其中一个在这篇论文里报道了的实验:你在水面上撒上一层胡椒粉,然后滴一滴风油精,你会看到原本分散在水表面的胡椒粉突然被这滴风油精推开,形成一个空白的圆形区域。

在总结完一切现象之后,Devaux在论文中感叹道:

原文:Qu’on les examine dans le monde inanimé ou dans les êtres vivants, ces lames nous montrent un ensemble merveilleux et insoupçonné encore il y a quelques années. La mise en surface se révèle comme une mise en action d’énergies qui arrangent partout les molécules et les forces moléculaires, avec une précision et une ampleur qui nous rempliraient d’étonnement si nous pouvions les distinguer. L’aspect d’un millimètre carré d’une lame monomoléculaire de cire, avec ses 1 000 milliards de molécules, mieux rangées que la plus splendide mosaïque, ou celui d’un fragment de membrane nucléoplasmique dans une cellule végétale ou animale, avec son activité prodigieuse, nous saisirait d’admiration.

“Qui a créé ces choses et qui dispose en ordre leur armée ?….” pourrions-nous dire en paraphrasant un Prophète qui parlait des étoiles (Esaïe, 40, 26). Mais une telle question dépasse ce que peut dire la Science humaine [la science faite par les hommes]. Le moindre atome de matière, comme la moindre cellule vivante est et restera toujours un mystère ; nous devons nous prosterner devant la souveraine Puissance qui a créé les mondes, les molécules et les êtres vivants.

DeepL翻译(我作了修改):无论我们是在无机的世界中还是在有机体中研究它们,这些单分子层都向我们展示了一个奇妙的、却直到几年前才被发现的整体:液体的表面显示出一种能量,这种能量处处安排着分子和它们之间的作用力,其精确性和规模——如果我们进行分析——会使我们充满惊奇。一平方毫米的单分子蜡片,有一万亿个分子,却排列得比最华丽的马赛克、或者植物或动物细胞的一块核膜还要好,再加上其惊人的活性,都让我们赞叹不已。

“你们向上举目,看谁创造这万象,按数目领出,他一一称其名。……”我们可以套用一位谈到星星的先知的话来发问(《以赛亚书》,40:26)。但这个问题已经超出了人类科学[人造科学]的范围。最小的物质原子,就像最小的活细胞一样,现在和将来都是一个谜;我们必须在创造世界、分子和生命体的主宰力量面前跪下。

p. 268, H.E. Devaux. Les lames très minces et leurs propriétés physiques. J. Phys. Radium, 1931, 2 (8)

二、Le Roux研究Devaux

Devaux的思想确实引起了学者的注意。我找到一篇相关的论文专门探讨了Devaux在思想中是如何统一宗教与科学的[2],作者是Benjamin Le Roux,研究领域是20世纪的表面科学史。以下的内容主要参考了这篇以Devaux为研究对象的科学史论文。

Devaux留下了大量的书信和实验记录,在这些资料里Devaux更加自由地透露了他对科学与宗教的关系的认识。Devaux生在一个虔诚的新教家庭,并从小延续了相的宗教信仰。但是父亲的去世削弱了他的信仰。学习和从事生物学研究的他明白了所有的有机生物一旦死亡就会腐烂,他的父亲也不例外。但是在他参加了一个美国福音派基督徒会议之后,重新恢复了信仰。从他会后的感想中可以看到“您必须先相信才能理解”的认识。这使得他在生物学研究当中原本造成信仰削弱的一些困惑反而成了他更坚定信仰基础。这也同时使他更勤奋地进行研究工作。因为只要他坚定了信仰,那么他的科学研究最终将导致对信仰的更深刻理解。

Devaux在1903年发表的界面科学先驱工作,在他本人的理解完全是受主的启示和恩典,不是偶然发现。因此他才要发表,以便使更多的人看到主的全能。为什么他这么在乎这一研究呢?因为两亲分子在界面的自组织是导向理解生命现象的一扇门(哪怕从纯科学视角来看)。因为这种现象至少说明,无机世界并不总是自发导向混乱,有时竟也能自发导向有序。如此大量的分子,每一个都不例外地排成有序结构,这是很吸引人的。

Devaux这篇1931年的论文,恰好成了Le Roux的重点研究对象,花了专门的一节来讨论。像Devaux这样在自然科学论文里直接荣誉主,是很少见的,尤其是在J. de Phys.这个期刊里。在Devaux发表时候J. de Phys. Radium的编辑是朗之万(Paul Langevin)。他当时刚刚建立了Union Rationaliste(暂译为“理性主义者联盟”)。按照其法语的Wikipedia词条介绍,

原文:Elle lutte contre les différentes formes de dogmatisme ainsi que contre le recours au surnaturel, et promeut une éducation laïque et républicaine.

DeepL:它反对各种形式的教条主义以及对超自然现象的追捧,并提倡世俗和共和的教育。

Wikipedia

因此,这个组织的宗旨是与神创论相悖的,也相当程度上代表了朗之万本人的思想。Le Roux还检索了同一个期刊在1918到1939的所有论文中与宗教有关的词汇,发现只有Devaux的这篇使用。一个反对神创论的期刊编辑,竟然允许了包含宣扬神创论文字的论文得以不加修改地发表,也是一个值得注意的现象。

Le Roux从Devaux留下的资料分析说明,后者在“地球年龄”和“进化论”这两个主要议题上的取向。简单地说,Devaux通过当时最新的生物学考古和遗传学知识分析,认为圣经里关于神创造世界的七天,并非现在认为的一天24小时,而很可能所谓的一天实际上对应着上千年,也就是说它是一日千年论者(Day-Age creationist),不支持年轻地球论。但是同样的知识让他坚定认为物种的不变性,反对进化论。

更详细的可见Le Roux论文的结论(谷歌翻译):

Devaux所做的研究倾向于表明,在20世纪初,对上帝的信仰,即使表现出来,也不一定是科学事业的制度或概念障碍。因此,尽管公开宣讲了宗教话语,并且在福音派基督教徒联盟内部做出了积极承诺,但 Devaux 能够在其原始学科——生理学——以及其他领域(例如分子物理学)中作出贡献。然而,他作为科学家的方法以其力图与信仰和解的辩护为特征的。在他那里,信仰是一切的源泉,甚至似乎是日常科学研究工作的动力。无论是在发现还是在辩护的背景下,Devaux都为宗教事实留下了空间。

他是一日千年论的支持者,同时拒绝任何形式的进化。因此,他的神创论思想显然受到对圣经的坚定信仰的影响,但似乎也建立在遗传学,地质学和分子物理学的先进科学知识之上。尽管我们不应用当前科学认识水平去分析当年的科学研究者的思想——这无疑会使我们陷入对历史学家来说危险的回顾性幻想中——但是不可否认的是,Devaux的信仰形成了一个限制性的框架,他无法超越这个框架。

在法国,Devaux同时是表面物理化学和“正统福音派”的领导者。在不改变我们对科学与宗教之间的关系的观念的前提下,他的生活倾向于表明,谈论二十世纪时,当下经典的“对立”或“排斥”话语可能是过于简单的描述。在1930年,保罗·朗之万(Paul Langevin)作为一位最热衷于理性和世俗主义的捍卫者,在他编辑的科学杂志上容忍了一项宗教言论,留出了空间让著名科学家自由表达观点。这一事实在此提及并无任何规范性暗示。

在Devaux的实验室笔记本中,我们发现在他一生的思想当中宗教和科学之间经常对话。除了了解这种辩证关系在那个年代是否受欢迎之外,这种形式的存在以及它作为一种表达的方式也值得科学史学者关注。

Devaux的论文[1]中展示的一个小实验:小船尾部粘了一小块樟脑,推动小船在水面上游行。1890年,瑞利利用这一现象估算了分子直径[3]。瑞利在水上滴油,直至小船不再运动,并视此刻为油分子完整铺满水面。根据所滴加的油体积与水面面积,瑞利估计了分子的直径约为1.63 nm。这种实验方法在后来的20多年里没有大的改变,被包括Devaux在内的后续研究者重复。

References

  1. H. Devaux, "Les lames très minces et leurs propriétés physiques", Journal de Physique et le Radium, vol. 2, pp. 237-272, 1931. http://dx.doi.org/10.1051/jphysrad:0193100208023700
  2. "IV. Measurements of the amount of oil necessary iu order to check the motions of camphor upon water", Proceedings of the Royal Society of London, vol. 47, pp. 364-367, 1890. http://dx.doi.org/10.1098/rspl.1889.0099