Tag Archives: science history

橡胶热机

《费曼物理学讲义》中介绍热力学的部分,设计了一个橡胶热机。

许多人复刻这个设计。YouTube上有很多视频了。比较值得注意的是Karlsruhe Institute of Technology做的原型,功率十分可观。

我一直以为,这个轮子的橡皮筋连到内圈上的位置是偏心的,以便当冷热两面皮筋张力有差异的时候,能制造出力矩不平衡,导致转动。但是这个帖子却介绍说,连接位置仍是中心对称的,造成不平衡的是外框形变程度不同,使得重力不平衡。

实际上比讲义(1960年代) 更早时,就已经有人利用橡胶的显著热弹性设计热机了,那就是Wiegand和Snyder的橡胶单摆[1]。其中一个模型在1933年芝加哥世博会连续运行了150天。

Wiegand的单摆

费曼的那种轮子设计,其实已经由Wiegand于1925年报道过。这个轮子是水平的。可以看到皮筋是以中心对称的位点连到内圈的。但注意到轮框是固定的,但内轴是曲辊,所以皮筋的张力差异能使曲辊旋转。而这种差异的周期变换需要外框相对蜡烛的旋转来实现。

Wiegand, 1925

50年代,生物体的弹性结缔组织(如筋腱)与橡胶弹性的相似性引起了一股研究热潮(Flory也陷到这里面去,争吵一直到他去世之后,这个以后再找时间写),因此也有人考虑过用筋腱做热机的想法[2]。R. Hayward在1956年5月的科学美国人上也展示了竖直轮的设计。Cox也报道[3]了竖直的轮子设计。这些报道清楚地表示这种设计是靠重力不平衡,不是靠我猜测的偏心扭矩不平衡。

50年代,

大概在费曼物理学讲义的同年,加州大学的劳伦斯辐射实验室的Paul. B. Archibald也做了一个热机,由C. L. Stong在《科学美国人》1971年4月作了介绍。同一篇文章也介绍了Wiegand的设计。

Wiegand’s inspiration to construct a rubber engine came one afternoon in 1920 as he was lecturing to a group of students at McGill University. He later gave the following account: “To demonstrate the Joule effect, I strung a bundle of rubber bands from the high ciling of the lecture room and by a weight stretched them to 500 per cent elongation. When a battery of Bunsen burners was placed beneath the stretched rubber, the weight leaped upwards; when the burners were removed, the weight sagged. The students seemed impressed by seeing heat induce contraction. I shared their interest, but in addition I also saw Carnot’s cycle: the reversible cycle in which heat is absorbed at high temperature and discharged at high temperature and discharged at a lower temperature. Here, I thought, is a potential heat engine. Subsequently I shared my hunch with a collaborator, H. F. Schipple, who was endowed with mechanical genius. As a result we constructed two heat engines, one reciprocating (in the form of pendulum) and the other rotating-a rubber motor”

Wiegand, 1920

在费曼之后,也有一些与Wiegand (1925) 设计类似(轮子)的热机报道[4]

References

  1. W.B. Wiegand, and J.W. Snyder, "The Rubber Pendulum, the Joule Effect, and the Dynamic Stress-Strain Curve", Rubber Chemistry and Technology, vol. 8, pp. 151-173, 1935. http://dx.doi.org/10.5254/1.3539424
  2. M.G.M. PRYOR, "Heat Exchanges of a Muscle Model", Nature, vol. 171, pp. 213-213, 1953. http://dx.doi.org/10.1038/171213a0
  3. E.G. Cox, "A heat engine run by rubber", Journal of Chemical Education, vol. 31, pp. 307, 1954. http://dx.doi.org/10.1021/ed031p307
  4. J.G. Mullen, G.W. Look, and J. Konkel, "Thermodynamics of a simple rubber-band heat engine", American Journal of Physics, vol. 43, pp. 349-353, 1975. http://dx.doi.org/10.1119/1.9852

“微流变”术语史

“微流变”(microrheology)在最近几年的文献中是专指III. 通过胶体粒子的热运动统计规律反推悬浮介质的流变性质的一种实验研究。这也是我现在研究方向之一。但是,这个术语最早的意义跟现在有些区别。

根据我查到的结果,“microrheology”一词最早出现在M. Reiner的流变学讲义(Markus Reiner (1943), Ten Lectures on Theoretical Rheology, Rubin Mass)中的第七讲。这个套讲义后来分别在1949年和1960年出了第二和第三版。第三版有中译本:M. 雷讷著,郭有中等译《理论流变学讲义》,由科学出版社于1965出版。在当时这个词大概是指I. 从微观结构推出宏观系统流变学性质的理论研究,似乎是用于与基于连续介质假定的理论相区别。后者被称作“macrorheology”。

大概相同的时期,胶体粒子悬浮液流变学的先驱Stanley G. Mason(1914-1987)大量使用这个词来描述他研究的问题。关于Mason经历的一些资料可见他的自述[1]和后辈写的appreciation[2]。Mason在1950年代就开始正式研究悬浮粒子的流体动力学。他创立的研究方法是II. 通过实验观察粒子周围的流场来验证流体动力学理论。因此,到了Mason这里,“microrheology”的意义就从理论模型变为实验手段。Mason也推导过胶体流变学理论,但他和他的学生不用“microrheology”一词描蒁这些理论工作。

Mason的及其学生的后续工作一直持续到1970年代。在这段时间,“microrheology”一词几乎只出现在他们发表的工作当中。也有零星愿意使用Reiner讲义的老意义的论文[3],包括冯元桢先生[4]。1970年代,“microrheology”一词被血液流变学领域大量采用,这也仍是归因于Mason的工作对这一领域的影响力[5]

我能找到的第一个意义变成现在的第III种的最早论文是1985年的一篇论文[6]

与“microrheology”一词十分相关的还有“microviscosity”。这个词反而最早就达到了今天对microrheology应该达到的理解。在1929年的第一届美国流变学年会上,E. Kraemer & R. Williamson[7]区分了几个层次的“摩擦”(friction)。一是宏观体系的粘度,二是粒子与周围流场界面处的摩擦,三是粒子形变的内部摩擦。“microviscosity”指的就是在IV. 微观尺度下的粘度——它常常与宏观尺度下对同一系统测得的粘度明显不同[8]。这件事早在“胶体”(colloid)一词的杜撰者Thomas Graham在1861年的研究中就发现了。盐在明胶或琼脂凝胶中的扩散比少慢不了多少,但前者的粘度比水高好几个数量级[9]。因此这令人相信,微观尺度物体感受到的液体的粘度是跟宏观测量值不同的。具体在这一实验现象中,研究者甚至是通过扩散的效果来理解粘度。这是在Einstein–Stokes关系的理论基础上的认识角度,把实验结果关于Einstein–Stokes关系的偏离当作粘度不同。今天我们还有另一种做法,那就是把实验结果关于Einstein–Stokes关系的偏离当作半径不同,定义出“流体动力学半径”。这两咱做法的人之间很少看到有交叉的,更别说有人去reconcile这两者。这可能是由于实验方法不同。一派人测量宏观系统的粘度,和分子的扩散系数。由于分子结构是明确的,这派人是不会怀疑分子还有另一种“半径”。另一派人用动态光散射测胶体粒子在悬浮液中或聚合物在溶液中的半径,并与电子显微镜或角度依赖散射的结果(均方回转半径)相比较。特别是对于聚合物试样,由于其分子尺寸只有平均概念,在溶液中的平均尺寸还受溶剂溶质相互作用以及流体动力学相互作用的影响。而扩散系数被隐含在动态光散射的基本原理当中。

References

  1. S.G. Mason, "How I became interested in colloid science", Journal of Colloid and Interface Science, vol. 71, pp. 8-10, 1979. http://dx.doi.org/10.1016/0021-9797(79)90214-5
  2. H.L. Goldsmith, and D.A. Goring, "Stanley G. Mason: An appreciation", Journal of Colloid and Interface Science, vol. 71, pp. 1-7, 1979. http://dx.doi.org/10.1016/0021-9797(79)90213-3
  3. L. Dintenfass, "Micro-rheology of pigment dispersion by “ball-milling” in non-aqueous media", Kolloid-Zeitschrift, vol. 170, pp. 1-19, 1960. http://dx.doi.org/10.1007/BF01520066
  4. Y. Fung, "Microrheology and constitutive equation of soft tissue", Biorheology, vol. 25, pp. 261-270, 1988. http://dx.doi.org/10.3233/BIR-1988-251-235
  5. H.L. Goldsmith, "Stanley Mason: His contribution to the science of Biorheology", Biorheology, vol. 26, pp. 99-107, 1989. http://dx.doi.org/10.3233/BIR-1989-26202
  6. J. Stoltz, and M. Donner, "Fluorescence polarization applied to cellular microrheology", Biorheology, vol. 22, pp. 227-247, 1985. http://dx.doi.org/10.3233/BIR-1985-22307
  7. E.O. Kraemer, and R.V. Williamson, "Internal Friction and the Structure of “Solvated” Colloids", Journal of Rheology, vol. 1, pp. 76-92, 1929. http://dx.doi.org/10.1122/1.2116295
  8. E.O. Kraemer, and G.R. Sears, "Viscosity and Adsorption in Colloidal Solutions", Journal of Rheology, vol. 2, pp. 292-306, 1931. http://dx.doi.org/10.1122/1.2116382
  9. T. Graham, "X. Liquid diffusion applied to analysis", Philosophical Transactions of the Royal Society of London, pp. 183-224, 1861. http://dx.doi.org/10.1098/rstl.1861.0011

中国和英国统计力学家在高分子溶液热力学的贡献

我们都知道Flory–Huggins溶液理论中的混合熵,就是把理想溶液的混合熵表达式中的摩尔分数改成了体积分数。以二元液态混合物为例,
$$\Delta_\text{mix}G^\text{id}=-T\Delta_\text{mix}S^\text{id}=RT\left[n_1\ln x_1+n_2\ln x_2\right]$$
而Flory–Huggins理论给出的小分子溶剂+线形高聚物溶质的结果是:
$$\Delta_\text{mix}S=-R\left[n_1\ln\varphi_1+n_2\ln\varphi_2\right]$$
以上讨论都假定$\Delta_\text{mix}H=0$,或者限于格子模型来说就是不同构形的内能相同。这被称为无热(athermal)溶液(是因为焓历史上被称为“heat”,其实这跟热容或熵不直接相关,反而是相互作用势能的体现)。如果按照惯例用相同条件下的理想混合物作为标准态,那么Flory–Huggins的结果体现的结论就是,仅因分子体积不同,也会制造出非零的超额混合自由能,且这个超额混合自由能是纯熵变。

早期认为,分子体积不同,是要通过它们造成了相互作用势的不对称,即非零的交换能$w\equiv w_{AB}-\left(1\middle/2\right)\left(w_{AA}+w_{BB}\right)$,毕竟分子大小首先就影响色散力。到了大概1930年中叶(在1936年的法拉第学会第65次一般讨论中),大家才接受不同分子尺寸的无热混合物有超额熵。R. Fowler提出大一点的分子可以考虑占两个格子。他和G. Rushbrook发表的这种计算结果[1]证实了这件事。仅仅作出这一小步的推广,数学推导的难度就大增。原文只讨论了$N_1\ll N_2$或$N_1\gg N_2$的情况。H. Bethe提出了一种方法[2],现在称为Bethe–Peierls近似,可以方便地考虑二体相关性下的构形数,即可得到概率$p_{ij},\quad i,j=A,B$。这个方法迅速被张宗燧和A. Miller等用于考虑大分子溶质的格子模型,从二聚体、三聚体一直推广到一般的$r$聚体[3][4][5][6]。这两个人靠Bethe方法写下构形数,得到无热溶液的混合熵变部分。W. Orr进一步把Bethe近似下的混合焓也写出来了[7][8]。E. Guggenheim用另一种更优雅的方法,得出了跟用Bethe方法一样的结果,并证明两种方法是等价的。这些来自英国(和我国张宗燧在英国留学时)的贡献,基本系统性地终结了聚合物溶液热力学的格子理论工作。可以参考A. Miller和E. Guggenheim的两本书:

  • A. Miller (1948), The Theory of Solutions of High Polymers, Clarendon
  • E. Guggenheim (1952), Mixtures, Clarendon
    也可以参考H. Tompa的书:
  • H. Tompa (1956), Polymer Solutions, Butterworths

这个H. Tompa也是值得一说的,但我可能要将在另一篇文章里讲。

我们今天所熟知的Flory–Huggins属于同时期美国人的工作。我之前的文章提到,是M. Huggins稍微比P. Flory早几个月开始推导高分子溶液的格子模型,似乎这种同时性是巧合,但其实Flory这个做法是受德国化学家K. Meyer的建议做的。K. Meyer和H. Mark合著了世界上第一本高分子科学的教科书。

值得强调的是,今天的Flory–Huggins形式,是Guggenheim一般形式中配位数$z\to\infty$的特殊结果,所以表达式中不显含$z$(交换熵变部分不含$z$,焓变对$z$的依赖性包在“相互作用参数” $\chi$ 的定义中了)。哪怕是限于导出Flory–Huggins的交换熵形式,也有不同的数格子方法。今天许多中文高分子物理教科书上的数法,就跟Flory在自己的书中的数法有点不同,但都用不同的近似主张凑出了相同的最后结果。其中一种写法需要说“假定 $z$ 与 $z-1$ 差别不大”。然而在3维空间中$z$的取值范围最高是12,一般考虑 $z$ 等于6到10。这样的取值怎么可能认为 $z$ 与 $z-1$ 差别不大?——除非取了$z\to\infty$ 极限。所以,其实一个严格的模型推导结果应该总是显含配位数的。Flory–Huggins这个不含配位数的更流行的形式仅仅是Guggenheim表达式的一个特殊性况。当然,分析表明,不同配位数的差别,在 $z=2,3,4$ 时十分巨大,但 $z>6$ 时差别比较小,那么Flory–Huggins的形式胜在简洁,所以这件事之后也就没人再追究了而已。

但是,一部分后来的人似乎认为配位数在物理上就不应该影响溶液热力学性质。这种看法不是来自物理直觉,而仅仅是Flory–Huggins模型长期教学误导。很多课堂讲解甚至教科书都会去强调这个结果中不含配位数这件事,好像本该如此。恰恰相反,物理直觉应该会告诉我们,配位数不同将严重影响热力学性质。从模型的角度,相同的溶剂(质)分子属性,仅配位数不同,对应于什么真实物理呢?它可能是分子的非球形或者分子的永久极性等影响堆砌的物理因素,而这当然是重要的热力学性质影响因素。

我曾经chair一个流变学会议的section,有一个演讲者介绍了他用格子模型来考虑过冷液体玻璃化转变的热力学理论。他直接使用的就是Flory–Huggins形式作理论预测,当然主要结果是通过MC计算机模拟来给出的。介绍完之后,场下没有人提问(可能话题太深了),于是我负责提了个问题,就是配位数在这里面起到什么作用。因为我当时的物理直觉告诉我,配位数就是堆砌情况,而这将在玻璃化转变中产生非常重要的影响。他用格子蒙特卡洛方法做,可以换不同的配位数来看。但是这个演讲者似乎觉得我的问题是不了解基本常识,具体就是“配位数仅仅是格子模型引入的概念,理应没有物理效应”这个“常识”。当然,这可能是我过度解读,实际上他只作了很隐晦的回复。

张宗燧的工作,后来被杨振宁和李荫远继续[9]。杨振宁还在论文的脚注强调了王竹溪的贡献[10]。诚然,“我对统计物理的兴趣即是受了竹溪师的影响。”(见:这里这里)。只不过杨和李的工作更面向固溶体,而张宗燧和王竹溪作为Fowler的学生,则跟Fowler做溶液的动机更接近些。

张宗燧在文革期间不忍无尽的斗争和折磨,于1969年服安眠药自杀(见这里)。

References

  1. R.H. Fowler, and G.S. Rushbrooke, "An attempt to extend the statistical theory of perfect solutions", Transactions of the Faraday Society, vol. 33, pp. 1272, 1937. http://dx.doi.org/10.1039/TF9373301272
  2. "Statistical theory of superlattices", Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, vol. 150, pp. 552-575, 1935. http://dx.doi.org/10.1098/rspa.1935.0122
  3. "Statistical theory of the adsorption of double molecules", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 169, pp. 512-531, 1939. http://dx.doi.org/10.1098/rspa.1939.0014
  4. T.S. Chang, "The number of configurations in an assembly and cooperative phenomena", Mathematical Proceedings of the Cambridge Philosophical Society, vol. 35, pp. 265-292, 1939. http://dx.doi.org/10.1017/S030500410002096X
  5. A.R. Miller, "The number of configurations of a cooperative assembly", Mathematical Proceedings of the Cambridge Philosophical Society, vol. 38, pp. 109-124, 1942. http://dx.doi.org/10.1017/S030500410002226X
  6. A.R. Miller, "The Vapour-Pressure Equations of Solutions and the Osmotic Pressure of Rubber", Mathematical Proceedings of the Cambridge Philosophical Society, vol. 39, pp. 54-67, 1943. http://dx.doi.org/10.1017/S0305004100017680
  7. W.J.C. Orr, "On the calculation of certain higher-order Bethe approximations", Transactions of the Faraday Society, vol. 40, pp. 306, 1944. http://dx.doi.org/10.1039/TF9444000306
  8. W.J.C. Orr, "The free energies of solutions of single and multiple molecules", Transactions of the Faraday Society, vol. 40, pp. 320, 1944. http://dx.doi.org/10.1039/TF9444000320
  9. . C. N. Yang, . Y. Y. Li, and . , "GENERAL THEORY OF THE QUASI-GHEMICAL METHOD IN THE STATISTICAL THEORY OF SUPERLATTIGES", Acta Physica Sinica, vol. 7, pp. 59, 1947. http://dx.doi.org/10.7498/aps.7.59
  10. C.N. Yang, "A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices", The Journal of Chemical Physics, vol. 13, pp. 66-76, 1945. http://dx.doi.org/10.1063/1.1724001