Category Archives: 以tag分类的文章

这些文章已经有tag,没有category。

汤森路透的年度报告

今天看了好几个Thomson Reuters的2014年总结或盘点。

首先是Research Fronts 2014报告。原来这个总结的数据分析是由我国科学院文献情报中心做的。

所谓Research Fronts,是先识别出近五年内引用率最高的论文(高引用率论文highly cited papers的选取另有方法,此略),然后找出这些论文中经常被同时引用的组合。本身是高引用率的文章,又经常被一起引用,说明就是一个研究方向中的重要论文(core papers),它们的集合也定义了一个研究前沿(research front)。一个research front的core papers数量和总被引数量可以表征这个research fronts的规模;平均每篇core paper被引数可以表征这个research front的被关注程度;core papers的平均发表年份及其分布可以表征这个research front的“热度”,即这个前沿增长多快,有多近期;总结这些core paper中出现率最高的keywords,可以定义出这个research front的内容。

Research Front 2014报告,是先将21个ESI领域的9700个research fronts划分成十个研究领域,然后按照总引用数,把每个研究领域中前10%的research fronts选出来。在这10%中,重新按这些research fronts的core papers发表的平均年份来排序(core papers集中在越近年的,就认为相应的research front越Hot),选出前十名的research fronts,总结在报告里。这些被选出来的被称为Hot Research Fronts。另外,报告还选出Emerging Research Fronts,即core papers平均发表年份在2012年下半年以后(>2012.5)的research fronts才被考虑,然后按总引用率排序,选出总引用数超过100的有44个research fronts,作为Emerging Research Fronts。这个排序是跨越所有十个研究领域的,所以有的领域的Emerging Research Fronts很多,有的领域一个都没有。Hot Research Fronts每个研究领域有10个,十个研究领域加起来有100个,再加上44个Emerging Research Fronts,这个报告一共选出了144个research fronts。中国科学院文献情报中心进一步在这144个research fronts中选出19个Key Research Fronts,选取的指标叫CPT,即考虑了core papers的被引用数(C)、core papers的篇数(P)以及引用了core papers的文章年份范围(T),构造成CPT = ((C/P)/T)这个比例。C/P其实就是平均每篇core paper的被引用数,用这个再除以T,就表示这些引用在年份上的集中程度。按照报告的原话就是,“it measures how extensive and immediate a research front is”。

在十个领域中,我主要关注的是Chemistry and Materials Science和Physics。首先是Chemistry and Materials Science的结果:

Hot Research Fronts in Chemistry and Materials Science

Hot Research Fronts in Chemistry and Materials Science

其中灰色高亮的是Key Research Fronts,即Functional metal organic frameworks。在研究功能MOFs的国家中,中国排第三,前两位是美国和韩国。如果按研究机构来排序,浙江大学与其他12所机构并列第1。MOFs前沿的8篇core papers,分别由8位通讯作者发表,其有中国浙江大学的钱国栋(Qian, GD),贡献了1篇core paper。按citing paper来排序(即引用了core papers的论文数量),中国排名第1,占49.0%。也就是说,这8篇core paper,近半是中国人引用的,引用机构排序中,中科院排第1,南京大学排第2,南开大学和吉林大学排第4(3个机构并列),浙江大学排第7,北京化工大学排第10(2个机构并列)。

由于core paper和research fronts本来就是根据引用率和共同引用率来选出的,MOFs领域能够跻身Hot Research Fronts乃至Key Research Fronts,很明显就是我们国家的研究者“自给自足”、“自力更生”的成果。相比之下,我们应该更愿意看到,由中国人贡献的core paper,主要被国外机构引用,这才显示,我们并非靠举国体制和人口优势把本来只是“自娱自乐”的课题推为“世界第一”(最后变成类似乒乓球运动的境地),而是真正的融入了世界科学界共同关注的研究领域当中去。

除了MOFs,10个Hot Research Fronts中,graphene出现了3个。跟高分子有关的只有一个,是高分子半导体和光伏器件的研究。

化学与材料科学领域还有14个Emerging Research Fronts,是十个领域中Emerging Research Fronts最多的领域:

Emerging Research Fronts in Chemistry and Materials Science

Emerging Research Fronts in Chemistry and Materials Science

报告选择了第一个Polymer solar cells with enhanced power-conversion efficiency进行了评述。事实上第3个Bulk heterojunction polymer solar cells、第12个High performance perrovskite-sensitized solar cells也是相近的研究方向。这些方向也已经是所有跟聚合物有关的Emerging Research Fronts了。在评述中,提到了华南理工大学的吴宏滨设计的反转结构器件,光电转换效率达到了9.2%(10%是商业化的门槛),最新的纪录已经被UCLA刷新到了11.55%(2014年7月)。

接下来是Physics领域的情况。Key Research Fronts当然就是Higgs子的研究了,尽管只有区区2篇core papers,分别由ATLAS和CMS。在这一领域中,中国在top countries中名列第7,机构是中科院,排第4。Thomson Reuters的统计没办法区分中科院下面的分所。

Hot Research Front中属于凝聚态物理的,主要都是高温超导相关的研究方向,此外,graphene和silicene各占一个。没有非晶态或者软物质的方向。

除了Research Front 2014报告外,汤森路透还预测了2025年科技如何影响我们的生活,做了一个The World in 2025的报告,总结出了10个方面的革新。其中跟化学、物理和材料科学有关的包括:物联网(涉及到传感器技术,跟化学、物理和材料科学有关)、解决粮食问题(结合了照明技术、转基因技术等)、以电为动力的飞机(涉及到电池技术和轻质复合材料技术)、纤维素衍生物代替合成塑料、太阳能、量子传输等等,占了十个中的六个。其中,纤维素衍生物的研究应该是最原汁原味的高分子研究了,是传统高分子化学(高分子的改性)、高分子物理(溶液和熔体、力学性能)和加工工程的用武之地,同时也很可能是不久的将来的经济增长点——假如按照汤森路透的预测,2025年将完全替代石油化工来源的塑料的话,那在这十几年之间应该就会看到生物质资源的产业化和商业化过程。

感想

汤森路透的统计,只是对过去的科研动态的研究结果,可以用来预测。但是所有的研究都只停留于现象学。它不能回答为什么是这些而不是那些研究成为了热门研究,不能归纳出能够成为热门研究的方向的特点或者规律性。因此,如果想通过汤森路透的数据来决定自己研究什么“最划算”,是不靠谱的。汤森路透只能选出core papers,然后统计这些core papers是如何被引用的。但是,哪怕从功利的角度去想,我们的目标并不是要去做引用core papers的工作,而是让别人服去引用我们的工作,使自己的工作成为core papers。但是这些core papers是怎么出现的,为什么这么多引用,汤森路透的数据是无法回答的,这恰恰体现了科研发展的自发性。

科学研究的潮流有起有伏,前几年甚至几十年是高潮的研究,后几十年就会是低潮。人一辈子,做不了几件事。正是因为我们往往都不可能是core papers的生产者,不可能当时代的弄潮儿,所以,能够做几件自己感兴趣的事才是我们平凡人能够追求的幸福。当我退休的时候,自问我这短短二十年的研究工作,想必不甚伟大,恰好也不太热门,文章的数量很少,impact也很低。那么,至少我是否真正感兴趣?我感兴趣的问题,做出答案了吗?我想认识的现象,认识到了吗?基金是向单位交差的,文章是向基金委交差的,孩子穷有穷养富有富养,钱是带不进棺材的。把自己感兴趣的事情作出了一定的成果,才算不枉此生。

新发表文章的致谢

我的一篇文章Journal of Colloid and Interface Science上发表了。第一作者是实验的完成人,我对实验结果进行了理论分析。具体内容可以直接去下载论文看。

这个工作从实验完成到发表拖了很长,主要时间花在理论分析部分。一开始我并不清楚反离子凝聚,只是发现粘土表面电荷密度太大,而且处于非对称(asymmetric)的电解质环境,因此粒子间的双电层作用不能采用Debye-Hückel近似,于是查到了Ohshima推导的一个Poisson-Boltzmann的精确解。可是用这个解来计算相互作用的时候总是得出nonphysical的结果。有怀疑过自己数值计算的代码有问题,再三检验和请教过比较熟的人之后也排除了。这期间老板也催过,他不知道这些具体的细节,就只觉得没必要拖这么久,我不得不直接说我这个可能会拖很久,因为我要认真搞懂这个问题。第一作者的学生对我就更没撤了。现在我还得谢谢他帮我做了这么多实验,还得被我压着不发表。要不是他拼命做实验,我刚工作的这两年可能都没办法有这么几篇文章向外界交差。说回到计算的问题,后来我实在没办法,想找Ohshima本人问一下。其实之前一直以为Ohshima是一个过世了的人,所以遇到问题一直都没想过去问本人。直到最后我想查他的工作的后续引用情况,看看别人是怎么使用他的结果的,发现使用他结果的人几乎没有,但他自己有发表新的文章,最新的有到200X年,于是才感觉这个人可能是还在生的人。经过一番搜索,才找到他的页面以及email,原来是个刚退休的研究所所长。很快就收到了他的回信,多次来往之后,我才知道,我的体系属于salt-free systems或者counterions only system,所以反离子浓度是不可忽略的,高电荷密度时会发生反离子凝聚。这应该是个常识了,无奈我知识还是欠缺,全赖他的指点。于是我才重新按照反离子凝聚的角度来思考我的体系。

在反离子凝聚的研究中,大部分是考虑柱状的带电表面的,主要面向的实际体系是聚电解质(包括DNA)溶液,又叫Manning condensation。球状的研究比较少,经常叫成charge renormalization。Manning自己也考虑过球状的体系[1],他的two-state model是从考虑自由能出发,认为精确的结果跟DH近似之间就是差一个系数,这个系数简单地认为是个非凝聚离子的比例系数(1-z\theta),其中\theta是凝聚离子所占比例。他的逻辑其实是非常笃定“反离子凝聚”的图像,认为有非常确定数量的反离子发生了“凝聚”。然后,通过自由能最小化来求得\theta的表达式。而[2]则是用cell model来求解Poisson-Boltzmann方程,证实了的确可以进行表面电荷(势)的等效。[2]的工作虽然被多次引用,但局限于理论研究的圈子之内。很少有用他的结果解释实验的工作。[3]做了一个salt-free体系的电泳实验并且进行了理论描述,使用了一个与[2]类似的approach。我的论文直接用了[2]的结果来计算相互作用势能U\left(h\right),然后进一步计算RLCA的stability ratio,得出与实验比较吻合的结果,应该是第一个。

我的文章发表时,审稿人也显示出比较高的兴趣,说我这是一篇excellent paper,有一条修改意见还是“This is an interesting point that should be explored and highlighted further.”

虽然我文章的致谢里已经感谢了Ohshima,但总觉得还是要亲自感谢他。文章发表后,我给Ohshima回信感谢他,把文章的PDF给他看了。他也回信对我进行了鼓励:

Dear Dr. Weixiang Sun

Thank you very much for sending me your excellent work.

Congratulations!

I have read your paper with great interest. You have made a great job.

Thanks again.

With best regards

Hiroyuki Ohshima

References

  1. G.S. Manning, "Counterion Condensation on Charged Spheres, Cylinders, and Planes", The Journal of Physical Chemistry B, vol. 111, pp. 8554-8559, 2007. http://dx.doi.org/10.1021/jp0670844
  2. H. Ohshima, "Surface Charge Density/Surface Potential Relationship for a Spherical Colloidal Particle in a Salt-Free Medium", Journal of Colloid and Interface Science, vol. 247, pp. 18-23, 2002. http://dx.doi.org/10.1006/jcis.2001.8105
  3. D.A.J. Gillespie, J.E. Hallett, O. Elujoba, A.F. Che Hamzah, R.M. Richardson, and P. Bartlett, "Counterion condensation on spheres in the salt-free limit", Soft Matter, vol. 10, pp. 566-577, 2014. http://dx.doi.org/10.1039/C3SM52563E

流变学怎样入门

流变学QQ群5069284,欢迎加入。群共享有流变学教材可供自学。

如果你想一次性系统而比较全面地学习流变学,建议阅读Macosko的Rheology: Principles, Measurements and Applications

如果你想先了解各类材料的经典流变学现象与相关理论模型,建议浏览Larson的The Structure and Rheology of Complex Fluids

如果你专注于高分子流变学,也可以再看Ferry的Viscoelastic Properties of Polymers,如果你不怕数学可以看Bird的Dynamics of Polymeric Liquids第1卷

如果你专注于胶体分散体系流变学,看刚才Larson那本书的相关章节已经够了。

如果你英语不好,可以先看周持兴的《聚合物流变实验与应用》

如果你想迅速入门,建议先不涉及流变学,先搞清楚测试仪器、测试方法和测试原理。把仪器测量理解透,仪器控制的是什么,测得的信号是什么,怎么换算成流变参数,会有什么误差,对样品有什么要求等等。