Day: August 12, 2008

  • 尼龙吸水啊吸水,嗯嗯

    脂肪族聚酰胺由于含有胺基和羰基,易与水分子形成氢键,因此所得到的各种材料在使用时容易吸水,产生增塑效应,导致材料体积膨胀、模量下降,在应力作用下发生明显蠕变等问题。聚己内酰胺和聚己二酸己二胺(尼龙6和尼龙66)是最常用的聚酰胺材料。它们最高能从潮湿空气中吸收质量分数10%的水分,在一般湿度环境下也能吸收质量分数2%到4%的水分,导致各种力学性能变差。尼龙6和尼龙66两种材料在本文讨论范围内区别很小,统称尼龙6/66。本文总结了关于尼龙6/66吸水机理和改善其吸湿性的研究。主要内容如下: 1. 水分对尼龙6/66各性质的影响 1.1. 结晶度和晶体结构 1.2. 力学性能和分子运动 1.3. 尺寸变化 1.4. 热定型方法 2. 尼龙6/66吸水的机理 3. 解决尼龙6/66吸水问题的方法 3.1. 共混和复合 3.2. 交联 3.3. 表面改性 4. 总结 5. 参考文献 1. 水分对尼龙6/66各性质的影响 尼龙6/66吸水之后,多种性质将发生变化,而且许多性质的改变和吸水量有关系。 1.1. 结晶度和晶体结构 对尼龙6/66的晶体学研究发现,尼龙6/66都是半结晶性材料,成型后都含有晶区和非晶区。在晶区,分子链呈平面锯齿构象,通过酰胺键在链与链之间形成氢键1。在非晶区,分子链构象呈无规状,大多数酰胺键未相互形成氢键,呈“自由”状态,但不排除少数区域形成了局部的氢键。早期尼龙研究中结晶度常通过密度估算2。尼龙6/66的密度比水大。吸水后,这两种材料的密度均反而上升3,结晶度也上升4, 5。经过拉伸取向的尼龙6/66材料常含有部分γ-晶。研究发现,吸水后尼龙材料的γ-晶比例减少,而更稳定的α-晶比例增大6-8。 1.2. 力学性能和分子运动 尼龙吸水之后在力学性能上的变化是明显的。最主要的特点是硬度、模量和拉伸强度下降、屈服点降低、冲击强度增加4, 5, 9-11。 尼龙6/66的分子运动研究方法有核磁共振、动态力学松弛和介电损耗等方法研究尼龙6/66材料的转变发现,其玻璃化转变温度(Tg)对水分比较敏感,吸水之后,Tg大幅下降12-18。例如,尼龙6水含量为0.35%w/w时Tg =94°C,10.33%w/w时Tg=-6°C19;干燥的尼龙66 Tg=78°C,当含水量为11%w/w时Tg=40°C15。同时发现,Tg随吸水量增加而下降的过程具有阶段性。起始下降迅速;当吸水质量分数超过一定值之后,下降缓慢19-21。综合各文献报道,该临界值约在2%~4%。尼龙6/66还在较低温度下表现β和γ转变22,其中β转变只在潮湿的样品中观察到14, 22-24,且其强度随着吸水量的增加而增加16, 17, 25。有的研究还发现,β转变峰强度的增加伴随着γ转变峰的减少,并呈现类似Tg的阶段性26-28。以上现象均表明类似塑化的效果,然而当测试温度进一步降低,超过某临界温度后,水分在尼龙6/66材料中的作用就相反,类似交联硬化12, 29-32。这个临界温度的具体值在不同报道中相差较大,有人提出这与动态力学测试频率、样品的取向程度等条件的不同有关31。 尼龙在长期受到小于屈服点的应力作用后,会发生硬化,这种效果称为“应力老化”(stress aging)33, 34。在吸水后,应力老化的速率加快35, 36。 1.3. 尺寸变化 尼龙6/66吸水后体积将发生膨胀。膨胀时,材料尺寸变化和吸水量变化并不完全同步。尼龙6纤维随着吸水量变化膨胀先快后慢37;而尼龙6薄膜则相反38, 39。经过拉伸取向的样品,膨胀具有各向异性。在拉伸取向的方向上膨胀较明显21, 30, 37。研究发现,尼龙6/66在拉伸作用下,其中的分子间氢键取向沿拉伸的方向靠拢21, 40,…