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第一讲 溶液热力学回顾

高分子溶液热力学部分的内容将频繁涉及到化学势、渗透压、液-液相图等溶液体系热力学的概念。如果

对这些概念本身比较陌生，将影响后序学习的效率。因此在这里简单回顾一下溶液热力学的基本概念。这些

知识应该在大二的《物理化学》课[1]中系统学习过了，因此在这里只重点列出最需要的部分知识。

1.1 热力学认识事物的基本思想和方法

热力学理论认为，一个物体在没有外界影响的条件下必将趋近于一个称为平衡态（equilibrium state）的状

态。平衡态是这样一种状态：在没有外界影响的条件之下，物体的各部分在长时间内不发生任何变化。这里的

“任何”一词是指体系所有能观察到的性质。

热力学理论进一步认为，两个物体之间能通过接触而相互影响，由它们原本各已处于的平衡态，达到它们

共同的平衡态。普遍来说，不管有多少个物体互相接触互相影响，只要时间够长，又没有外界影响，它们最后

必定达到一个共同的平衡态。

以上论断，都是大量经验的总结，但在热力学理论的体系中要当作公设。

我们常把互相接触的若干个物体中的某一个作为关心的对象，称作系统（system）。而与系统接触的其他

物体，在接触前已经达到已知的平衡态，在与系统接触达到新的平衡态之后，称作环境（environment）。系统与

环境是一对概念。我们常通过使环境的规模比系统大得多，视环境在与系统接触前后的性质变化不大，而近

似地视环境的条件被恒定了。比如，环境是一个温度为 𝑇 的“大热源”，体系与这个大热源接触并发生热传导，
二者的温度应该都变化到一个新的温度 𝑇 ′。但所谓“大热源”意味着它的温度变化非常小，故 𝑇 ′ ≈ 𝑇。依此类
推，我们在实验上总是能够通过设计系统与环境的接触方式，来控制或改变一个系统所处于的平衡态。

按照这样的实验思路进行大量实验，我们终究能够发现，一个系统的平衡态能够由少数必要的参数所确

定。我们称这些参数为状态变量（state variables）。可以用来确定一个系统的平衡态的状态变量有很多，但是

通过大量实验总能发现，其中只有少数几个之间是相互独立的。所谓两个状态变量相互独立，是指我们能够

保持系统的其中一个状态变量恒定，独立改变系统的另一个状态变量。反之，如果我们改变一个系统的两个

状态变量，它的第三个状态变量就要随之改变，无法恒定，那这第三个状态变量就不独立于前两个。

系统的状态及其变化规律是由实验总结的，那么我们最初所认识系统的这些状态变量就都是可测量的

量。通过实验，可以找出这些可测量状态变量之间的依赖关系——即状态方程（equation of state）——从而知

道这些状态变量中相互独立的是哪些。状态方程是描述一个体系凡处于任一平衡态时，各状态变量之间总满

足的函数关系。例如，理想气体状态方程

𝑝𝑉 = 𝑛𝑅𝑇

就是说，尽管理想气体在任一平衡态下，各部分的温度 𝑇、压强 𝑝和摩尔体积 𝑉/𝑛 均不随时间变化，但是它们
的取值之间还受上列等式约束。因此，这三个状态变量中只有两个是相互独立的。

状态变量分为广度性质和强度性质。我们倾向于把状态方程写成仅含强度性质的形式，以彰显物质的规

律性不依赖物体的大小和规模。例如，1升水和 1毫升水，在比较广的范围内，热力学性质应该相同。按照这
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1.1 热力学认识事物的基本思想和方法 第一讲 溶液热力学回顾

种喜好，再以理想气体状态方程为例，它将被写成

𝑝𝑉m = 𝑅𝑇

其中 𝑉m ≡ 𝑉/𝑛是摩尔体积。
不同的物体的状态方程是不同的，这是物质的特殊性的体现。但是热力学的理论基础是若干条对所有体

系均普适的基本定律。由这些热力学基本定律首先形成内能和熵的概念，并由此衍生出焓、亥姆霍兹自由能、

吉布斯自由能等函数。其中内能和熵是一个系统最基本的热力学函数。它们是系统的平衡态性质，且都是广

度性质，因此可以写成确定体系平衡态的几个独立状态变量的函数。焓、亥姆霍姆霍兹自由能和吉布斯自由

能都是用内能和熵再定义出来的函数，故它们也是体系的平衡态性质，且都是广度性质，因此可以写成确定体

系平衡态的几个独立状态变量的函数。这些由热力学基本定律生出来的状态函数都不能直接测量，甚至不能

讨论其绝对取值，只能讨论它们在体系从一个状态变为另一个状态时的变化量。我们把这些函数称为热力学

势（thermodynamic potential）。它们虽然是抽象的，但却是很重要的，因为根据热力学基本定律，它们决定了任

何一个物体：1）是否可能发生一个过程；2）能否稳定处于某一个状态；3）一个过程中是否吸、放热……等与实

际应用直接相关的最重要的若干基本预测。而且，通过微分关系，它们能被表达成可以测量的状态变量的函

数，所以并非完全不可知，于是热力学理论才能够应用于实际问题。

当我们说，一个物体在平衡态下，它的所有可观察的性质不随时间变化，且具体由一组状态变量确定；同

时又说，一个物体能够通过与特定的环境接触，从一个平衡态变化到另一个平衡态，那就相当于说，一个物

体处于任一平衡态时，它的所有可观察的性质不依赖它达到当前状态的历史路径（因为它只依赖当前状态

变量）。任何体系只要处于某平衡态，不管它的状态变量是可测量的体系性质，还是热力学势函数，在热力

学基本定律和状态方程的联合约束下，总是同一组相互独立的状态变量的函数，称为体系的状态函数（state

function）。我们写成 𝑀 = 𝑀 (𝑋, 𝑌 , ⋯)，并假定 𝑀 是广度性质，𝑋、𝑌、……等是除摩尔数 𝑛之外的一组互相独立
的状态变量∗。

物体在两个状态之间变化所做的功和吸的热是依赖路径的，所以功和热一般不是体系的状态变量。热力

学第一定律说，就算功和热依赖路径，但它们的总和†却总是一个状态函数（对于孤立系统这个状态函数是内

能）。而热力学第二定律，除了能分辨事物的发展路径是“自发”还是“不可能”的方向性外，也同时暗示了‡只

要物体在其路径上的变化“无限慢”，路径的不同所造成的差异就收敛了，两状态之间的功和热各自也只依赖

这两个状态，而不再依赖到达的路径。所以我们只要讨论可逆过程，功和热各自也成了状态函数。

只有状态函数才可作为数学上的函数来处理，使热力学的思想能用数学语言精确地陈述。热力学理论在

状态函数作为数学上的函数性质上，还有一些默认的规定。物理上，热力学认为物体总能从一个状态连续地

变化至另一个状态，也就是说状态变量的取值范围是连通的。不可能有一个状态是物体从另一个状态无论如

何都变不到的。而且，任何一条变化路径，都能通过“准静态化”变为可逆的路径，从而任意两个状态间，无论

实际吸放热或做功几何，它们的可逆吸放热和可逆功总可独立视为状态函数。这在数学上相当于规定状态函

数作为一个函数 𝑀 (𝑋, 𝑌 , ⋯)总是连续可微的。也就是说，它们不仅可微分，而且导函数都连续，所以二阶交叉
偏导数可交换求导顺序，即

𝜕2𝑀
𝜕𝑋𝜕𝑌 = 𝜕2𝑀

𝜕𝑌𝜕𝑋
我们特别要注意明确一个状态函数的独立、完整的一组自变量。独立、完整确定体系状态的变量，可以不

止一组。例如，说一个体系的状态可独立、完整地由温度 𝑇 和压强 𝑝 确定，它也可以独立、完整地由温度 𝑇 和
体积 𝑉 确定，因为这个体系的压强、温度和体积由其状态方程所联系，这三个量就不是互相独立的；确定了两
个就同时确定了第三个。比如确定了 (𝑇 , 𝑝)就同时确定了 𝑉，即 𝑉 = 𝑉 (𝑇 , 𝑝)是体系状态方程的一种表达形

∗按惯例，广度性质 𝑀 的自变量中不把摩尔数 𝑛明确写出来了，因为按照广度性质的定义，𝑀 关于 𝑛的函数关系都是正比例关系，而没有其他复杂表
达式的可能性。

†热和功是同量纲的物理量，这件事是由焦尔的热功当量实验确立的。所以可以拿它们来求总和。
‡通过规定熵是状态函数，或说通过公理化地宣称这样的状态函数的存在。
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第一讲 溶液热力学回顾 1.2 化学势

式。若说 𝑀 = 𝑀 (𝑇 , 𝑉 )，则理论上总能通过把 𝑉 = 𝑉 (𝑇 , 𝑝)代进去，写出 𝑀 = 𝑀 (𝑇 , 𝑉 (𝑇 , 𝑝)) = 𝑀 (𝑇 , 𝑝)的形式。
但若说 𝑀 = 𝑀 (𝑇 )，那就叫“不完整”；若说 𝑀 = 𝑀 (𝑇 , 𝑝, 𝑉 )，那就叫“不独立”。

经验表明，一个多组份体系（即混合物体系）的状态参数，除在相同前提下的单组份体系所需要的那些外，

还需要增加各组份的摩尔数 𝑛1, 𝑛2, ⋯，简记为 {𝑛𝑖}。例如，一个不受外场（重力、电、磁等）作用，且接触力作用只
有各向同性静压（即所谓的“只做体积功”）的单组分体系，摩尔数 𝑛一定时，它的状态可用温度 𝑇、压强 𝑝、体
积 𝑉 三个变量中的两个所确定。而对于总摩尔数 𝑛 ≡ ∑𝑖 𝑛𝑖一定的多组分体系，则还要在单组份情况的基础上
加上 {𝑛𝑖}才能确定其状态。如果我们把一个状态函数 𝑀 (𝑇 , 𝑝, {𝑛𝑖})换成相应的强度性质——即除以总摩尔数
𝑛得一其摩尔量 𝑀m ≡ 𝑀/𝑛，那么这个摩尔量就会是 𝑀m (𝑇 , 𝑝, {𝑥𝑖})，其中 𝑥𝑖 ≡ 𝑛𝑖/𝑛是组份 𝑖的摩尔分数，是强
度性质。这样混合物体系的性质就仍可表示为强度性质之间的关系。

只要 (𝑋 , 𝑌 , ⋯)是一个体系的一组独立完整的状变量，则任一状态函数关于这组自变量的全微分可写成

d𝑀 (𝑋, 𝑌 , ⋯) = 𝜕𝑀
𝜕𝑋 |

𝑌 ,⋯
d𝑋 + 𝜕𝑀

𝜕𝑌 |
𝑋,⋯

d𝑌 + ⋯

任意两个状态 (𝑋 ∘, 𝑌 ∘, ⋯)和 (𝑋 , 𝑌 , ⋯)之间的变化量
Δ𝑀 = 𝑀 (𝑋 , 𝑌 , ⋯) − 𝑀 (𝑋 ∘, 𝑌 ∘, ⋯)

= ∫
𝑋

𝑋 ∘
𝜕𝑀
𝜕𝑋 |

𝑌 ,⋯
d𝑋 + ∫

𝑌

𝑌 ∘
𝜕𝑀
𝜕𝑌 |

𝑋,⋯
d𝑌 + ⋯

(1.1)

因此，热力学理论的数学推导有两个关键，第一是状态函数的完整微分式 d𝑀 的表达式，第二就是恰当选择一
个参考态 (𝑋 ∘, 𝑌 ∘, ⋯)，利用上列的积分式表出任意状态 (𝑋 , 𝑌 , ⋯)下的状态函数的明显表达式。这样的参考态
在热力学资料中常被称为各种“标准态”（standard state），是为了方便不同的实际问题的解而灵活地选定的。

我们常常关注 𝑀 作为热力学势时的微分式 d𝑀 或变化量 Δ𝑀。因为，只要所选用的热力学势 𝑀，与实验
方便控制的一组完整独立状态变量 (𝑋 , 𝑌 , ⋯)，一齐形成的是体系的特性函数（characteristic function），那么其

变化量 Δ𝑀 将表明系统在两状态间变化的可能性和方向性，其微分式 d𝑀 将给出系统在某状态下的稳定性，
最终发挥出热力学理论的实践应用中的威力。剩下的问题就是如何把不可直接测量的热力学势用可直接测

量的状态变量表示出来——而这是可以实现的。

1.2 化学势

在多组份体系的问题中，决定体系的平衡态的状态变量除了温度 𝑇、压强 𝑝 和体积 𝑉 外，还包括各组份
的摩尔数 {𝑛𝑖}。因此，任意一个多组份体系的热力学势函数都是关于这些状态变量的函数。特别地，定温定压
下，混合物体系的特性函数是吉布斯自由能 𝐺 = 𝐺 (𝑇 , 𝑝, {𝑛𝑖})，其中 {𝑛𝑖}表示 𝑛1, 𝑛2, ⋯是混合物各组份的摩尔
数。吉布斯自由能对这些自变量的全微分：

d𝐺 = −𝑆d𝑇 + 𝑉d𝑝 +∑
𝑖
𝜇𝑖d𝑛𝑖

其中

𝜇𝑖 = 𝜕𝐺
𝜕𝑛𝑖

|
𝑇 ,𝑝,{𝑛𝑗≠𝑖}

= 𝜇𝑖 (𝑇 , 𝑝, {𝑛𝑘})

是组份 𝑖在混合物中的化学势（chemical potential of the 𝑖-th component in the mixture）。它就是恒温恒压下单独

变化组份 𝑖的摩尔数造成的吉布斯自由能变化。在溶液热力学中我们常关心恒温恒压（d𝑇 = d𝑝 = 0）下组份
变化的过程，因此化学势是我们主要关注的热力学势函数。

液体混合物的化学势表达式的书写依赖标准态的选择。当组份 𝑖的纯物质在同温同压下也是液态时，宜
选择这一状态为混合物的标准态，此时组份 𝑖在混合物中的化学式可表示成

𝜇𝑖 (𝑇 , 𝑝, {𝑛𝑘}) = 𝜇∗𝑖 (𝑇 , 𝑝) + 𝑅𝑇 ln 𝑎𝑖 (1.2)
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1.3 混合函数 第一讲 溶液热力学回顾

其中 𝑎𝑖 = 𝑎𝑖 (𝑇 , 𝑝, {𝑛𝑘})是组份 𝑖在混合物中的活度（activity of the 𝑖-th component in the mixture）。上标“*”表示

纯物质。理想混合物可通过活度定义为任一组份 𝑖都满足下式的混合物

𝑎id𝑖 (𝑇 , 𝑝, {𝑛𝑘}) ≡ 𝑥𝑖

其中 𝑥𝑖 ≡ 𝑛𝑖/(∑𝑗 𝑛𝑗) 是组份 𝑖在混合物中的摩尔分数。上标“id”表示理想混合物。对于真实混合物，任一组

份 𝑖的活度在其纯物质极限（𝑥𝑖 → 1）总是一致收敛∗至 1。

以上假定的是任意个组份形成的混合物。我们常说的“溶液”，常指定了某一组份为“溶剂”，其余组份统

称为“溶质”。如果我们明知溶质不止一个组份，却仍然只标记溶剂为 A（摩尔数 𝑛1）、溶质为 B（摩尔数 𝑛2）（这
是《物理化学》书中使用的惯例[1]），则实际讨论的是所有溶质的平均性质。在《高分子物理》书[2]的惯例中，溶

剂标记为组份 1、溶质标记为组份 2，我们在这里也采用这种惯例。

1.3 混合函数

在讨论混合物体系时，我们还经常通过混合函数来讨论体系。定温定压下，混合物的任一状态变量𝑀（它
可以是体积 𝑉、内能 𝑈、熵 𝑆 等广度量）的混合函数（mixing function）均一般地定义为同温同压下，某组成的混

合物的该性质 𝑀 与各组份纯物质的该性质 𝑀∗𝑖 加和之差别：

Δmix𝑀 (𝑇 , 𝑝, {𝑛𝑖}) def= 𝑀 (𝑇 , 𝑝, {𝑛𝑖}) −∑
𝑖
𝑀∗𝑖 (𝑇 , 𝑝)

采用了前文选择的标准态后，各主要热力学函数的混合函数的含活度的表达式如下

Δmix𝑉 = 𝑅𝑇 ∑
𝑖
𝑛𝑖

𝜕 ln 𝑎𝑖
𝜕𝑝 |

𝑇 ,{𝑛𝑗 }
(1.3)

Δmix𝑆 = −𝑅∑
𝑖
𝑛𝑖 [ln 𝑎𝑖 + 𝑇 𝜕 ln 𝑎𝑖

𝜕𝑇 |
𝑝,{𝑛𝑗 }

] (1.4)

Δmix𝐺 = 𝑅𝑇 ∑
𝑖
𝑛𝑖 ln 𝑎𝑖 (1.5)

Δmix𝐻 = 𝑅𝑇 2∑
𝑖
𝑛𝑖

𝜕𝑎𝑖
𝜕𝑇 |𝑝,{𝑛𝑗 }

(1.6)

特别地，对于理想混合物，把 𝑎id𝑖 ≡ 𝑥𝑖代入上列各式得

Δmix𝑉 id = Δmix𝐻 id = 0, (1.7)

Δmix𝑆id = −𝑅∑
𝑖
𝑛𝑖 ln 𝑥𝑖, (1.8)

Δmix𝐺id = 𝑅𝑇 ∑
𝑖
𝑛𝑖𝑥𝑖, (1.9)

我们又把 Δmix𝑆 = Δmix𝑆id 或超额混合熵 Δmix𝑆E = 0 的液态混合物体系称为正规溶液（regular solution），

Δmix𝐻 = 0的液态混合物体系称为无热溶液（athermal solution）。所以正规溶液的 Δmix𝐻 不一定为零，无热溶
液的 Δmix𝑆E不一定为零。两种溶液的 Δmix𝑉 都不一定为零。本课程后面主要介绍的格子模型理论，由于模型
本身的缘故，假定了 Δmix𝑉 = 0，重点为非零的 Δmix𝐻 和 Δmix𝑆E 建立物理图像。我们除理想溶液外再定义这
两种溶液概念，是为非理想溶液范围之内的讨论设立参考模型。

∗说一个多元函数 𝑓 (𝑥, 𝑦 , ⋯)在其中一个自变量 𝑥 → 0时一致收敛（uniformly converge）至某值 𝑎，就是指 𝑓 (𝑥, 𝑦 , ⋯)在任意固定的 𝑦、𝑧、……等自变量取
值下，lim𝑥→0 𝑓 (𝑥, 𝑦 , ⋯) = 𝑎。注意到组份 𝑖在混合物中的活度 𝑎𝑖 仍然是状态变量的函数，即 𝑎𝑖 = 𝑎𝑖 (𝑇 , 𝑝, {𝑛𝑘 })。
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1.4 渗透压

渗透压（osmotic pressure）是定温定外压条件下，混合物在半透膜两侧产生的压差。如图1.1所示，容器内有

一张只透溶剂的半透膜，一侧是溶液相（𝛼 相），另一侧是纯溶剂相（𝛽 相）。平衡态下，半透膜两端的压差就是
渗透压。

温度𝑇𝑇

外压𝑝𝑝𝑝𝑝 + Π,
𝑛𝑛𝑘𝑘𝛼𝛼

𝑝𝑝,𝑛𝑛𝑖𝑖
𝛽𝛽 ,

𝑛𝑛𝑗𝑗≠𝑖𝑖
𝛽𝛽 = 0

图 1.1: 渗透压的示意图

可透组份 𝑖的化学平衡条件是其在两相中的化学势相等：
𝜇𝛼𝑖 (𝑇 , 𝑝 + Π, {𝑛𝑘}) = 𝜇𝛽,∗𝑖 (𝑇 , 𝑝) (1.10)

其中等号左边要做一个压强从 𝑝变为 𝑝 + Π的过程，以便写成

𝜇𝛼𝑖 (𝑇 , 𝑝 + Π, {𝑛𝑘}) = 𝜇𝛼𝑖 (𝑇 , 𝑝, {𝑛𝑘}) + ∫
𝑝+Π

𝑝
𝑉𝑖 (𝑝′) d𝑝′ (1.11)

其中用到了Maxwell关系之 𝜕𝜇𝑖/𝜕𝑝|𝑇 ,{𝑛𝑘 } = 𝑉𝑖，𝑉𝑖 = 𝜕𝑉/𝜕𝑛𝑖|𝑇 ,𝑝,{𝑛𝑗≠𝑖}是组份 𝑖在
混合物中的偏摩尔体积。我们可定义 𝑉𝑖为

𝑉 𝑖 = 1
Π ∫

𝑝+Π

𝑝
𝑉𝑖 (𝑝′) d𝑝′ (1.12)

物理上 𝑉𝑖 可解读为组份 𝑖在混合物中温度为 𝑇、压强在 𝑝 ∼ 𝑝 + Π范围内的平均偏摩尔体积。我们常常假定
𝑉𝑖 ≈ 𝑉 ∗

m,𝑖 (𝑇 , 𝑝)，这个假定至少可能以下两种情况下成立：1）组份 𝑖浓度很高时其在溶液中的偏摩尔体积约等
于该组份纯物质在同温同压下的摩尔体积；2）组份 𝑖在这一混合物系统中的超额体积确实比较小；3）混合物
系统近似理想混合物（各组分的超额体积都很小）。联立式(1.10)至(1.12)，我们就有

𝜇𝛼𝑖 (𝑇 , 𝑝 + Π, {𝑛𝑘}) ≈ 𝜇𝛼𝑖 (𝑇 , 𝑝, {𝑛𝑘}) + Π𝑉 ∗
m,𝑖 = 𝜇𝛽,∗𝑖 (𝑇 , 𝑝)

⇔ 𝜇𝛼𝑖 − 𝜇𝛽,∗𝑖 ≈ −Π𝑉 ∗
m,𝑖

留意到，𝜇𝛼𝑖 和 𝜇𝛽,∗𝑖 分别就是同温同压下组份 𝑖在混合物 𝛼 相和纯物质 𝛽 相的化学势，因此由式(1.5)，它们的差

就是偏摩尔混合吉布斯自由能变：

Δmix𝜇𝑖 ≡ 𝜇𝛼𝑖 − 𝜇𝛽,∗𝑖 = 𝜇𝑖 − 𝜇∗𝑖 = 𝜕
𝜕𝑛𝑖

Δmix𝐺|
𝑇 ,𝑝,{𝑛𝑗≠𝑖}

(1.13)

故我们也可以写下

Δmix𝜇𝑖 ≈ −Π𝑉 ∗
m,𝑖 (1.14)

代入式(1.5)到式(1.13)，得

Δmix𝜇𝑖 = 𝑅𝑇 ln 𝑎𝑖 +∑
𝑘≠𝑖

𝑛𝑘 𝜕
𝜕𝑛𝑖

ln 𝑎𝑘 |
𝑇 ,𝑝,{𝑛𝑗≠𝑖}

当组份 𝑖在混合物中的浓度很低时 𝑎𝑖 ≈ 𝑥𝑖，上式第二项的偏导数都为零，故
Δmix𝜇𝑖 ≈ 𝑅𝑇 ln 𝑥𝑖 ≈ −Π𝑉 ∗

m,𝑖

⇒ Π𝑉 ∗
m,𝑖 ≈ −𝑅𝑇 ln 𝑥𝑖 = −𝑅𝑇 ln(1 −∑

𝑘≠𝑖
𝑥𝑘)

= −𝑅𝑇 ln (1 − 𝑥2) = −𝑅𝑇 [−𝑥2 − 1
2𝑥

22 + ⋯] ≈ 𝑅𝑇𝑥2
上列推导利用了 ln (1 − 𝑥) ≈ −𝑥 − 1

2𝑥2 + ⋯的泰勒级数展开。要约等式成立，必须有 𝑥2很小，即所有溶质的总
摩尔份数都很低，也就是极稀溶液时才成立。此时，体系大部分是溶剂，若记溶液体积为 𝑉，则 𝑉 ∗

m,𝑖 ≈ 𝑉/𝑛，其
中 𝑛 ≡ ∑𝑘 𝑛𝑘 是体系的总摩尔数。进而

Π ≈ 𝑅𝑇 𝑥2𝑛𝑉 = 𝑅𝑇 𝑛2𝑉 = 𝑅𝑇 𝑐2
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其中 𝑐2是溶质的总的物质的量浓度，此即范托夫（van ’t Hoff）公式，它是极稀溶液的近似式。

我们常把溶液浓度不够稀时对上式的偏离写成以下位力展开形式：

Π = 𝑅𝑇 (𝑐2 + 𝐵2𝑐22 + ⋯) (1.15)

若溶质只有一个组份，则有

𝑐2 =
𝑛2
𝑉 = 𝑚2

𝑀2𝑉
= 𝐶2

𝑀2
其中 𝐶2 ≡ 𝑚2/𝑉 是溶质的质量浓度，𝑀2是溶质的摩尔质量∗，渗透压的位力展开又可写成

Π
𝐶2

= 𝑅𝑇 ( 1
𝑀2

+ 𝐴2𝐶2 + ⋯) (1.16)

此即书上的式 (1-9)。当上式关于 𝐶2的高次项可忽略时，Π/𝐶2 ≈ 𝑅𝑇 (1/𝑀2 + 𝐴2𝐶2)是关于 𝐶2的线性函数，截
距是 𝑀−12 。所谓“渗透压法测分子量”专指这种截距法。若再忽略 𝐶2的二次方项，则 Π是 𝐶2的线性函数。一
般地，线性函数 𝑓 (𝑥)具有性质，对任意实数 𝑎，都有 𝑓 (𝑎𝑥 + 𝑦) = 𝑎𝑓 (𝑥) + 𝑓 (𝑦)。因此，若记 𝐶𝑖、𝑀𝑖分别为组份 𝑖
的质量浓度和摩尔质量，𝐶 = ∑𝑖 𝐶𝑖，则在极稀溶液条件下，

Π = 𝑅𝑇 ∑
𝑖

𝐶𝑖
𝑀𝑖

= 𝑅𝑇𝐶∑𝑖 𝐶𝑖/𝑀𝑖
∑𝑖 𝐶𝑖

= 𝑅𝑇𝐶 ∑𝑖 𝑛𝑖
∑𝑖 𝑛𝑖𝑀𝑖

= 𝑅𝑇𝐶
𝑀n

即书中的式 (1-10)，其中用到了数均分子量的定义（书中的式 (1-1)）。也就是说，当溶质不止一种时（比如视不

同分子量的同种聚合物为不同的组份），渗透压法测分子量的结果是数均分子量。

1.5 混合吉布斯自由能的用处

1.5.1 预测给写下两个状态间的变化是否可能

考虑定温定压下的溶解过程，适用于这种过程的热力学势函数是吉布斯自由能 𝐺 (𝑇 , 𝑝, {𝑛𝑖})。若问，恒定
温度 𝑇、压强 𝑝 下，纯物质 1和 2变为摩尔分数为 𝑥2 的溶液在热力学上是否可能，则需关心混合吉布斯自由
能 Δmix𝐺 (𝑇 , 𝑝, {𝑛𝑖})，

Δmix𝐺
⎧
⎨
⎩

> 0, 不可能（反向过程自发）
= 0, 双向可逆
< 0, 自发

因此，若能把定温定压下 Δmix𝐺 关于 𝑥2 的函数形式写出来，那么考察 𝑥2 ∈ [0, 1]上 Δmix𝐺 ≤ 0的区间，则可知
该溶质在这些区间对应的摩尔分数下自发溶解。

1.5.2 预测溶液的相行为

如果我们让系统处于给定的状态 (𝑇 , 𝑝, {𝑛𝑖})，然后放开其中的一个条件的约束（比如 𝑥2）允许其自由取值，
那么系统会停在原状态不变吗？这个问题可以通过考察混合吉布斯自由能的变化来回答。

我们先用一个普通物理的问题来说明。在重力作用下，把一个质量为 𝑚 的小球放在如图1.2所示的一维

滑轨（曲线方程 ℎ = ℎ (𝑥)）上位置甲处，然后放手。若问小球是否能停在甲处不动？我们可以通过考察小球的
势能 𝑈 = 𝑚𝑔ℎ (𝑥)曲线形状来回答。如图所示，显然情况乙、丙是可以稳定的，这两个点满足：在 𝑥乙（或 𝑥丙）邻
近的一定范围内，

d𝑈
d𝑥 = 0, d2𝑈

d𝑥2 > 0
如果小球是微观的，要沿 𝑥 轴作热运动，则情况乙的小球有一定概率掉到 𝑥丙 处，而在 𝑥丙 的小球能跃至 𝑥乙
处的概率比前者小得多。如果有 𝑁 ∼ 𝑂 (1023)个小球，则在大量热运动（即热平衡）下，就有相应比例的小球
处于 𝑥乙和 𝑥丙处。

∗所有用稀溶液依数性测分子量的方法其实都基于浓度单位的这一转换关系。
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𝑥

ℎ 𝑥

图 1.2: 小球的势能曲线示意图

可见，势能随自由状态量变化的曲线形状特征决定一系统稳定状态。若

把 𝑈 换成热力学势（吉布斯自由能），把 𝑥 换成自由的状态变量（比如溶液
的摩尔分数 𝑥2），则热力学势关于自由状态变量的一阶导数为零，且二阶导
数为正的点就是热力学稳定的状态。如图所示的势能曲线将预示摩尔分数

𝑥2 = 𝑥甲 的溶液将无法保持稳定均相，而将相分离为摩尔分数 𝑥2 = 𝑥乙 和
𝑥2 = 𝑥丙 的两相。留意到，吉布斯自由能对于摩尔分数的偏导数就是化学势。
由式(1.13)，我们说混合吉布斯自由能能预测溶液的相行为。关于这个应用，

后面将在溶液相图的内容中再作具体介绍。

1.5.3 稀溶液依数性的应用

前面我们已经回顾过渗透压法测分子量的原理，这是稀溶液依数性的一种应用。同样地，化学势是吉布

斯自由能的偏导数，因此也是混合吉布斯自由能的偏导数（见式(1.13)）。涉及到化学势的变化时，我们可以利

用混合吉布斯自由能的变化来进行分析。
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第二讲 小分子溶液的格子模型

无论是理想溶液、正规溶液还是真实溶液，目前我们只建立了它们的一般热力学关系。例如，对于正规溶

液，可能有 Δmix𝐻 ≠ 0，这是对其共性的描述。而具体的 Δmix𝐻 表达式则体现体系特性，随具体试样而异。这
类反映体系特性的规律需要基于微观模型，通过统计力学推导得出。本节将介绍一种简单的微观模型——格

子模型（lattice model）。利用该模型，我们既能重现理想溶液和正规溶液的混合熵变表达式，又能给出正规溶

液非零混合焓变的一种表达式。通过这一过程，我们还能理解溶液体系的熵和焓的微观来源。

2.1 溶液的内能的微观根源

热力学系统的内能（或称热力学能）是除开其作为一个整体质心运动的动能，以及其处于外场下的势能

之外，体系内部的总能量。若体系由 𝑁 个经典微观粒子组成，那么在没有外场时，这种热力学体系的内能是其
内部的动能和势能之和。在任一瞬间这 𝑁 个粒子的总能量 𝐸𝑁 可写成：

𝐸𝑁 = 𝐾𝑁 + 𝑉𝑁
其中 𝐾𝑁 和 𝑉𝑁 分别是这 𝑁 个粒子的瞬时总动能和总势能。若这 𝑁 个粒子的瞬时位置是 r1, r2, ⋯ , r𝑁，动量是
p1, p2, ⋯ , p𝑁，则 𝐾𝑁 和 𝑉𝑁 分别只与动量和位置有关†。瞬时总动能 𝐾𝑁 可直接写出来

𝐾𝑁 = 1
2

𝑁
∑
𝑖=1

‖p𝑖‖2
2𝑚

其中 𝑚是粒子的质量。在没有外场时，瞬时总势能就是粒子间相互作用势的总和。一般地，我们只能写成

𝑉𝑁 = 𝑉𝑁 (r1, r2, ⋯ , r𝑁 )

在恒温恒容的热力学平衡态下，宏观体系的内能是体系内部总能量的系综平均：

𝑈 = ⟨𝐸𝑁 ⟩ = ⟨𝐾𝑁 ⟩ + ⟨𝑉𝑁 ⟩

其中系统的平均总动能正比于温度 ⟨𝐾𝑁 ⟩ ∝ 𝑇，因此恒温过程的内能变化 Δ𝑈 仅依赖体系的平均势能 ⟨𝑉𝑁 ⟩的
变化。为此我们需要更加具体地考虑 𝑉𝑁 (r1, r2, ⋯ , r𝑁 )

一般地，粒子间的相互作用是“多体”的。比方说，如果体系只有两个粒子 1和 2，我们知道它们的相互作

用势能随距离的函数 𝑢 (𝑟12)，那么当体系有三个粒子 1、2和 3时，它们的总相互作用势能未必直接等于加和

𝑢 (𝑟12) + 𝑢 (𝑟13) + 𝑢 (𝑟23)，而可能需要另外考虑一种三体相互作用势。然而长期的理论和实验对照表明，大部分
情况下只考虑二体相互作用的加和就足够符合实际了。此时瞬时总势能可以写成

𝑉𝑁 = 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝑢 (𝑟𝑖𝑗)

其中 𝑟𝑖𝑗 是第 𝑖个粒子与第 𝑗 个粒子之间的距离，即 𝑟𝑖𝑗 = ‖r𝑖 − r𝑗 ‖，𝑢 (𝑟)是两粒子相互作用势能随距离的函数。
图2.1展示了 𝑢 (𝑟)的一种典型曲线形状。

†前提是一个没有外场作用的保守体系，但理解这些术语需要经典力学知识。
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2.2 格子模型 第二讲 小分子溶液的格子模型

𝑎 𝑟

𝑟

𝑢 𝑟
𝐫𝑖

𝐫𝑗

𝑟𝑖𝑗

图 2.1: 用于说明粒子相互作用势的示意图。任意两个粒子 𝑖和 𝑗 的相互作用势依赖它们的距离 𝑟𝑖𝑗，可由热能函数 𝑢 (𝑟)来描述。
对于硬球粒子，𝑟 的取值范围是 [2𝑎, ∞)，𝑎是粒子的半径。无论 𝑢 (𝑟)的具体形式，在 𝑟 → ∞时 𝑢总是趋于零。因此为了简化可设
置某截断值，不考虑距离大于这个值的粒子间作用势（见正文介绍）。

由于相互作用势 𝑢 (𝑟)总是规定在 𝑟 → ∞处为零。我们可以认为距离大于某个值的两个粒子的势能贡献
小到可以忽略。从而少算很多对粒子。以下举两例典型的相互作用势进行考察。

两个相同半径 𝑎的球形粒子间的范德华作用势是

𝑢vdW (𝑟) = −𝐴H𝑎
6𝑟

其中 𝐴H 是 Hamaker常数，它与粒子作为一个实际物质被诱导出偶极矩的难易程度有关，负号使作用势取负

值，这是因为惯例上以负值的作用势表示吸引作用势。𝐴H的值一般在−1019 J到−1020 J。我们可以用热运动单
位能量 𝑘B𝑇 作为一个判据，如果吸引势能的大小小于 𝑘B𝑇，它将无法束缚粒子的热运动。由 |𝑢vdW (𝑟)| < 𝑘B𝑇 得
𝑟 > 𝐴H𝑎/ (6𝑘B𝑇 ) ≡ 𝑟cut，𝑟cut是我们按这个标准定义的截断距离。在30 °C时，水分子（𝐴H = 3.7 × 10−20 J）之间的
作用势截断距离 𝑟cut ≈ 1.5𝑎。可见，范德华势对总势能的贡献，一般只需考虑相邻两粒子间的加和即可。

在水中，同种电荷的单价电解质之间的静电势

𝑢el (𝑟) = 1
𝑘B𝑇

𝜆B ( 𝑒𝜅𝑎
1 + 𝜅𝑎)

2 𝑒−𝜅𝑟
𝑟

其中 𝜆B 是 Bjerrum 长度，𝜅−1 是 Debye–Hückel 屏蔽长度。在室温下，1mmol L−1 的NaCl 水溶液，𝜆B ≈
0.71 nm, 𝜅−1 ≈ 0.074 nm。令 |𝑢el (𝑟)| < 𝑘B𝑇 得 𝑟cut ≈ 7.1𝑎。可见，静电相互作用在两、三个分子的距离范围内都
是十分重要的势能贡献。所以我们常说，范德华作用是短程作用，静电作用是长程作用。

尽管采用了截断距离的近似能让我们少算好多对粒子的势能，但这只对计算机模拟时减少计算量有利。

在一定温度下，宏观上处于平衡态的体系，微观下粒子一直在运动。宏观性质的系统平均是按各微观状态出

现概率求得的数学期望。如果只有草稿纸和铅笔，沿着上述思路是很难继续下去的。下面引入格子模型和平

均场假定来计算内能。

2.2 格子模型

上一节我们看到，实际分子在连续的 3维欧几里得空间中运动，它们的位置关系可以有无限种可能。就

算我们只考最邻近二体相互作用，加上作用势的截断，也无法解决这个问题。实际上，虽然每个分子都可以运

动到空间中的任意位置，是分子是有一定的尺寸的，它们的位置不可重叠。如图2.1所示，两个半径为 𝑎的硬球
粒子间的作用势在 𝑟 < 2𝑎 时是无穷大，这就排斥了粒子间的重叠。基于这个事实，任何时刻每个分子周围最
邻近的分子数是有限的。这使得我们在平均意义上可以采用格子模型来描述分子的空间分布。

我们假想溶液体系所占体积被划分成网格，格子的大小都相同。无论是溶剂还是溶质分子，每个分子只

能放在一格，这相当于认为溶质和溶剂分子的大小相同，且混合前后体积不变，即 Δmix𝑉 = 0。
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图 2.2: 二元液体混合物中溶质分

子在正规溶液格子模型中的分布

示意图

在 3维空间中，我们可以设定这套网格的配位数 𝑧，即每个格子周围相邻
的格子个数。在三维空间中，尺寸相同的球的堆积密度与堆积的方式有关，造

成不同的配位数。显然，需要 𝑧 ≥ 2才有可能构成可在三维空间中延展的网
格结构。最紧密的堆砌方法是面心立方（face-centered cubic，FCC）或六方密排

（hexagonal close-packed，HCP），它们的配位数都是12。因此 𝑧 的理论上的取值
范围须是2到12，实际体系 𝑧 一般大于6。此外，液体中的分子不是静止不动
的。所以在任一瞬间，各分子都并不精确地落在一套周期性的晶格内。因此，

格子模型的配位数仅反映液态体系中平均而言每个分子邻近的分子数，故 𝑧
可取 6至 12间的任意一个有理数。

我们马上会看到，格子模型和平均场思想简化了我们考虑体系的总势能

的难度。现在，我们只考虑处于相邻格子的两个分子间的势能对总势能的贡

献，这相当于取 𝑟cut = 2𝑎。这对于仅有范德华作用势的体系是比较合理的近
似。既然任意两个相邻分子的间距都是 2𝑎，那么势能只需考虑三个定值：

𝜀11 = 𝑢11 (2𝑎) , 𝜀22 = 𝑢12 (2𝑎) , 𝜀12 = 𝑢12 (2𝑎)

其中 𝑢11 (𝑟)、𝑢22 (𝑟)和 𝑢12 (𝑟)分别是两溶剂分子间、两溶质分子间以及一溶剂分子与一溶质分子间的相互作用
势能函数。由于分子种类不同，它们应是不同的势能函数。

我们要认识到，宏观视为静止的体系，在微观下其分子一直在运动。每一时刻，每个分子邻近的分子是溶

质还是溶剂分子，也时时、处处不同。由于这种变化十分快，所以宏观上的效应，就好像每个分子邻近的分子

种类跟溶液中该种分子的浓度相同。这是一种平均场（mean-field）近似，即采用宏观平均参数，来作为微观局

域环境对单个分子的影响的一种估计。在这里，每个格子中的分子是溶质（2号）的概率，按照平均场近似，就

直接等于溶液在溶液中的宏观平均浓度。这样的话，由 𝑁1 个溶剂和 𝑁2 个溶质分子混合的溶液体系，任一格
子周围的 𝑧个格子中，将有 𝑥1𝑧个格子放了溶剂，其中 𝑥1 ≡ 𝑁1/ (𝑁1 + 𝑁2)是溶剂的摩尔分数。总共有 𝑁1个溶
剂分子，就有 𝑁1𝑥1𝑧 个 1-1相邻的分子对和 𝑛2𝑥2𝑧 个 1-2相邻的分子对∗。同理又知总共有 𝑁2 个溶质分子，则
又算得共有 𝑁2𝑥2𝑧个 2-2分子对和 𝑁2𝑥1𝑧个 2-1分子对。两种计算是重复的，因此溶液的平均总势能是上列计

数所对应的总势能的二分之一：

𝑈溶液 = 1
2𝑁1 (𝑧𝑥1𝜀11 + 𝑧𝑥2𝜀12) + 1

2𝑁2 (𝑧𝑥2𝜀22 + 𝑧𝑥1𝜀12)

在混合前，溶质和溶剂各自以纯物质的状态存在。例如，纯溶质体系只有 𝑁2个分子 2，每个分子 2之间全是分

子 2（𝑥1 = 0、𝑥2 = 1）。纯溶剂体系情况类似。因此，纯溶质与纯溶质的总势能是

𝑈纯组份 = 1
2𝑁1𝑧𝜀11 + 1

2𝑁2𝑧𝜀22

由此可直接写下混合内能变化：

Δmix𝑈 = 𝑈溶液 − 𝑈纯组份
= 𝑁1𝑁2𝑧

𝑁 (𝜀12 − 1
2𝜀11 −

1
2𝜀22)

= 𝑁1𝑥2𝑧Δ𝜀 (2.1)

其中我们定义了交换能

Δ𝜀 ≡ 𝜀12 − 1
2𝜀11 −

1
2𝜀22

∗我们忽略了恰好处于溶液边界上、因此配位数少于 𝑧的情况，因此一个宏观尺度规模的体系，处于边界上的分子跟全体分子相比，比例小到可以忽略，
可近似认为所有分子都是“在内部的”。
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我们可以从交换能 Δ𝜀 的表达式理解其物理意义。由 2Δ𝜀 = 2𝜀12 − 𝜀11 − 𝜀22，我们知道 Δ𝜀 是溶质与溶剂分
子间相互作用势能的差值。如果 Δ𝜀 > 0，溶质分子与溶剂分子相邻的状态比它们各自相邻的状态势能更高，
是溶解的不利因素；反之，如果 Δ𝜀 < 0，则溶质分子与溶剂分子相邻的状态比它们各自相邻的状态势能更低，
是溶解的有利因素。由于热力学势函数常用 𝑘B𝑇 作为单位，我们又定义相互作用参数（interaction parameter）：

𝜒12 def= Δmix𝑈
𝑘B𝑇𝑁1𝜑2

(2.2)

其中 𝜑2 是溶质的体积分数。这个定义式是普遍适用的。在格子模型下小分子溶质和溶剂占用体积是相同的
（都是一个格子）所以这里 𝜑2 = 𝑥2。结合式(2.1)和(2.2)，我们可以得到，格子模型所预测的小分子溶液相互作用

参数是

𝜒12 = 𝑧Δ𝜀
𝑘B𝑇

(2.3)

由于我们假定了 Δmix𝑉 = 0，因此将有 Δmix𝐻 = Δmix𝑈 + 𝑝Δmix𝑉 = Δmix𝑈，因此格子模型预测的混合焓变
就等于混合内能变：

Δmix𝐻 = Δmix𝑈 = 𝑘B𝑇𝜒12𝑁1𝑥2 (2.4)

2.3 溶液的熵的微观根源

当分子数 𝑁 非常大时，热力学系统在定温定压下或定温定容下某宏观状态的熵都近似于内能相同的孤
立系统表达式，即

𝑆 ≈ 𝑘B lnΩ

其中 Ω是具有与实际关注的系统相同的分子数、相同的体积以及相同的内能的孤立系统的可取微观状态数。
对于一个由 𝑁 个微观粒子组成的经典力学系统，一组位置 (r1, ⋯ , r𝑁 )和动量 (p1, ⋯ , p𝑁 )的取值就唯一确定
系统的一个微观状态。所以 Ω就是表示这个孤立系统在定温定容定内能下可以取多少种不同值的一组位置
和动量。这将是一个天文数字，但我们坚持继续讨论下去。

注意到，经典力系的动量与位置取值相互独立，意思是说，体系可以取的动量值个数不依赖体系已取的位

置值，反之亦然。那么，若体系可取 Ωm 种动量值和 Ω𝑐 种位置值∗，则总共可取的微观状数将直接是它们的乘

积 Ω = ΩmΩc。再考虑到，溶质与溶剂混合前、后温度是相同的，由温度“平均动能”的物理意义，我们不难接

受这一说法：混合前、后 Ωm相同
†。此时混合前后体系的熵变化

Δmix𝑆 = 𝑆溶液 − 𝑆纯组份
= 𝑘B (lnΩm + lnΩc,溶液 − lnΩm − lnΩc,纯组份)
= 𝑘B (lnΩc,溶液 − lnΩc,纯组份)
= Δmix𝑆c

其中 𝑆c = 𝑘B lnΩc 叫位形熵（configurational entropy）。上式表明，对于等温混合过程，只需统计混合前后位形

数 Ωc——即分子空间排布的方法数——的变化，就能得到体系的混合熵变了。

在格子模型中，分子空间排布的方法数可抽象成一个组合数问题。若考虑把 𝑁1个溶剂分子和 𝑁2个溶质
分子依次放入 𝑁 = 𝑁1 + 𝑁2 个格子中，总共有 𝑁!种放法。但由于同组分的分子是不可区分的，因此还要除以
𝑁1!𝑁2!。于是溶液分子的位形数是

Ωc,溶液 = 𝑁!
𝑁1!𝑁2!

(2.5)

∗m代表动量（momentum）；c代表位形（configuration）。
†严格的统计力学理由待补充。
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在混合前，组份 1和 2处于纯物质状态，相当于把 𝑁1个溶剂分子放入一个盒子中，以及把 𝑁2个溶剂分子放入
第二个盒子中的方法——只有一种。因此 Ωc,纯组份 = 1，𝑆c,纯组份 = 0。混合熵变就是

Δmix𝑆 = 𝑘B lnΩc,溶液

= 𝑘B [ln (𝑁 !) − ln (𝑁1!) − ln (𝑁2!)]

当 𝑁 很大时，可以用 Stirling近似（Stirling’s approximation）：

ln (𝑁 !) ≈ 𝑁 ln𝑁 − 𝑁

代入上式，得

Δmix𝑆 = −𝑘B (𝑁1 ln 𝑥1 + 𝑁2 ln 𝑥2) (2.6)

我们发现，这个混合熵变表达式恰好是理想溶液的混合熵变表达式（式(1.8)的双组份情况）。我们知道，理想混

合物的混合熵变是由理想溶液的热力学定义和基本热力学关系所规定的。这里我们通过格子模型的微观模

型的推导复现出了理想溶液的混合熵变表达式。我们因此可以认为，尽管格子模型作了各种简化假定，但它

基本抓住了溶液的微观机理。

最后，结合我们对混合焓变和混合熵变的推导结果式(2.1)和(2.6)，我们可以写下由格子模型所预测的正规

溶液的混合吉布斯自由能变表达式：

Δmix𝐺 = Δmix𝐻 − 𝑇Δmix𝑆
= 𝑘B𝑇 (𝑁1 ln 𝑥1 + 𝑁2 ln 𝑥2 + 𝜒12𝑁1𝑥2) (2.7)

且当 𝜒12 = 0时，上式自然回到理想溶液的情况（式(1.9)）。把玻尔兹曼常数 𝑘B换成气体常数 𝑅，则分子个数 𝑁𝑖
就相应换成物质的量 𝑛𝑖即可。得到了混合自由能变的表达式，我们就可以供我们对溶液体系的很多具体性质
的进行预测。这将在后面的章节集中讨论。

总结一下我们在这一讲所用到的近似：

• 假定了 Δmix𝑉 = 0。等温等压混合过程的 Δmix𝑉 = 𝑅𝑇 ∑𝑖 𝑛𝑖 (𝜕 ln 𝑎𝑖/𝜕𝑝)|𝑇 ,{𝑛𝑗 }，其中 𝑎𝑖 是组份 𝑖在混合物中
的活度。从形式上看，非零的混合体积变化来自混合物非理想性对压强的依赖性。理想混合物的混合体

积变化恒为零。这个假定使得混合内能变和混合焓变相等，Δmix𝐻 = Δmix𝑈。
• 假定了 𝑁 → ∞，即体系的分子数非常大。这一方面使得我们在恒温恒压下可以使用玻尔兹曼熵公式（它
对孤立系统才是精确的），另一方面使得我们可以使用斯特林近似。

• 在计算混合焓变时，只考虑最相邻两粒子的相互作用势能对总势能的贡献。这仅适用于短程相互作用，

主要适用于电中性分子（非电解质），而且溶剂溶质极性都很弱，分子间只存在色散力的情况。我们所得

到的结论首先不适用于电解质；其次不适用于强极性分子，甚至有氢键作用的体系。

• 在计算混合焓变时，使用平均场近似，即每一个格子的邻近格子的分子种类概率都等于溶液中该种

分子的宏观平均浓度，而不依赖当前格子放的是什么分子。这只适用于 Δ𝜀 → 0 的情况——而此时
Δmix𝐻 → 0，系统变成理想溶液，也失去讨论正规溶液的必要性了。如果承认交换能 Δ𝜀 ≠ 0，就是说溶剂
分子与溶质分子“亲疏有别”，至少在给定一种分子的邻近，两种分子的出现概率是不同的，将依赖中心

分子的种类。平均场近似把这种效应忽略掉了。

• 在计算混合熵变时，我们同样作了上一条假定，也就是放置每一个分子到任何一个剩余格子都等概率，

不用依赖已放置分子的数量和方法。这样才使问题变成一个简单的组合数问题。

• 溶剂和溶质分子尺寸相仿，都占且只占一格。

我们特别注意到，混合熵取理想溶液形式要由两个假定来保证：一是平均场假定，非平均场的理论模型将既修

改混合焓又修改混合熵，带来非零的超额混合熵；二是溶剂与溶质尺寸相仿，保持平均场假定时，仅因分子尺

寸效应，也能带来超额混合熵——这正是高分子溶液的情况，将在下一讲介绍。
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图 3.1: 一条高分子链的链段在格

子中的一种放置方式。

我们把格子模型应用于线型高分子溶液。上一讲最后总结的所有假定，

除最后一条外都作保留。为处理高分子溶质的尺寸效应，将作如下基本考虑：

1. 每个高分子链占 𝑥 个格子，故 𝑥 正比于高分子的聚合度。高分子每一格
子的部分暂称“链段”，但这只是临时称呼，它不同于链统计理论中的库

恩链段；

2. 高分子链的不同构象势能都相同，因此它取任一构象的概率相等。这相

当于忽略了内旋转势能的影响，类似自由联结链的假设；

3. 平均场假定，即微观局部的分子环境等于宏观整体的均值。

假定有 𝑁1 个溶剂分子和 𝑁2 个高分子链，且每个高分子链占 𝑥 个格子，
则总的格子数为 𝑁1 +𝑁2𝑥。我们可以把一个高分子画成由 𝑥 个球相连接的整
体。原则上，格子模型可以考虑线形、支化、嵌段共聚物等不同链拓扑结构的

情况[3]。本课只考虑线形高分子溶液，如图3.1所示。

3.1 高分子溶液的混合熵

在上一讲中，我们已经知道，格子模型讨论下的等温混合过程的混合熵变等于位形熵的变化：

Δmix𝑆 = 𝑘B (lnΩc,溶液 − lnΩc,纯组份)

其中 Ωc,溶液 是把混合物各组份的分子放入网格的方法数。在本问题中，混合物中有 𝑁1 个溶剂分子和 𝑁2 个
高分子链，每个高分子链占 𝑥 个格子。总的格子数为 𝑁1 + 𝑁2𝑥。

因此我们所面临的组合数问题是：把 𝑁1个溶剂分子（每个占 1格）和 𝑁2条长链分子（每条占连续相邻的
𝑥 格）放入 𝑁1 + 𝑁2𝑥 个格子中，有多少种不同的放置方法。我们可以按某种方便的先后步骤去假想这个过程，
只要后一步的方法不依赖前面步骤的结果，那么整件事的方法数就等于各步骤方法数之积。我们注意到，不

管我们怎么放置这 𝑁2 条长链份子，剩下的 𝑁1 个溶剂分子放入 𝑁1 个格子中的方法都是 1种，因此求 Ωc,溶液

就只需计算把 𝑁2条长链放入 𝑁 个格子的方法数。
这 𝑁2 条链的放置方法数需要考虑链段间的连接性的限制，因此并非典型的组合数题目。我们采用类似

“数学归纳法”的步骤，若能先写下：已放入 𝑗 条链后，第 𝑗 + 1条链的放置数——𝑊𝑗+1，则这 𝑁2 条依次放入网
格的方法数就是

𝑁2−1
∏
𝑗=0

𝑊𝑗+1

在这个总数中，我们把这 𝑁2 条链的不同放置次序的不同也当作不同的放法了。实际上我们认为不同次序的
放法是等价的，所以上面的式子还要除以 𝑁2!，即

Ωc,溶液 = 1
𝑁2!

𝑁2−1
∏
𝑗=0

𝑊𝑗+1 (3.1)
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才对。这里的 Ωc,溶液就是书上式（3-12）中的 Ω。
现在我们考虑这个 𝑊𝑗+1等于什么。假设已有 𝑗 条链，占了 𝑥 × 𝑗 个格子，剩下 𝑁 − 𝑥 × 𝑗 个空格子。我们考

虑放置第 𝑗 + 1条链的情况。这条链的第 1个链段可在这 𝑁 − 𝑥 × 𝑗 个空格子中任意一个放置。但第 2个链段

——以及之后的链段——就只能在上一个已放置链段周围的 𝑧 − 1个格子中选空的格子来放置。这 𝑧 − 1个格
子不一定都是空的，而可能会因为之前已经放置的 𝑗条链的摆放方式而被部分占据。所以这 𝑧 − 1个相邻格子
到底空了几个可以给我们放现在的链段是首先需要估计的。这个被占据格子的比例依赖以下因素：

• 之前已经放了几条链（即 𝑗 的值），以及它们的放置方式；
• 现在要放的是当前链的第几个链段（即之前已经放了多少个链段），以及它们的放置方式。

这时，我们采用平均场假定来确定这个比例。具体地，我们认为，无论之前链段的放置方式如何，任一格

子补占的概率都等于当前的链段浓度。至于放置方式方法的不同就不管了。这是十分符合实际的。因为在溶

液中，溶质链段和溶剂分子都在高速而杂乱无章地运动，而不是按某一特定的放置方法固定在相应的格子里

的。我们讨论放置方式纯粹只为计算一个总数。我们可以想象，每多放一个链段，它就立刻加入到这场杂乱无

章的运动当中，迅速遍历所有可能的格子。因此，新增一个链接的效果仅体现在总链段浓度的增加。任一放置

步骤后，网格中的任一位置被链段占据的概率都等于当下的链段浓度。

已放置 𝑗 条链，以及第 𝑗 + 1条链的 𝑘 个链段时，当前链段总浓度就是网格的链段数与总网格数之比
𝑥 × 𝑗 + 𝑘

𝑁
此时，任一格子未被占据的概率就是 1减上面那个式子，即

𝑁 − 𝑥 × 𝑗 − 𝑘
𝑁

第 𝑘 + 1个链段只能放在第 𝑘个链段周围的 𝑧 − 1个格子中。它们每一个是空格的概率都是上式，因此第 𝑘 + 1
个链段的放法数是

(𝑧 − 1) (𝑁 − 𝑥 × 𝑗 − 𝑘
𝑁 )

整条第 𝑗 + 1链的放法就是

𝑊𝑗+1 = (𝑁 − 𝑥𝑗) 𝑧 𝑁 − 𝑥𝑗 − 1
𝑁

𝑥−2
∏
𝑘=2

[(𝑧 − 1) 𝑁 − 𝑥𝑗 − 𝑘
𝑁 ]

书上说“𝑧 与 𝑧 − 1差别不大”，因此可以近似地把 𝑧 当作 𝑧 − 1。我们暂时接受这种说法，则上式就变成书上的
式（3-11），即

𝑊𝑗+1 ≈ (𝑧 − 1
𝑁 )

𝑥−1 (𝑁 − 𝑥𝑗)!
(𝑁 − 𝑥𝑗 − 𝑥)!

代入式(3.1)，

Ωc,溶液 = 1
𝑁2!

𝑁2−1
∏
𝑗=0

𝑊𝑗+1

≈ 1
𝑁2!

𝑁2−1
∏
𝑗=0

(𝑧 − 1
𝑁 )

𝑥−1 (𝑁 − 𝑥𝑗)!
(𝑁 − 𝑥𝑗 − 𝑥)!

= 1
𝑁2!

(𝑧 − 1
𝑁 )

(𝑥−1)𝑁2 𝑁! (𝑁 − 𝑥)!⋯ (𝑁 − 𝑁2𝑥 + 𝑥)!
(𝑁 − 𝑥)!⋯ (𝑁 − 𝑁2𝑥 + 𝑥)! (𝑁 − 𝑁2𝑥)!

= 𝑁 !
𝑁1!𝑁2!

(𝑧 − 1
𝑁 )

𝑁2(𝑥−1)

此即书上的式（3-13），其中用到了 𝑁1 = 𝑁 − 𝑥𝑁2。拿上式与正规溶液的格子模型相比（式(2.5)），溶质变成长链

分子后，就使位形熵多出了一项含有聚合度 𝑥 的贡献项。
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现在我们可以使用斯特林近似进一步简化上式：

lnΩc,溶液 ≈ 𝑁2 (𝑥 − 1) ln 𝑧 − 1
𝑁 + ln 𝑁!

𝑁1!𝑁2!
= 𝑁2 (𝑥 − 1) ln (𝑧 − 1) − 𝑁2 (𝑥 − 1) ln𝑁
+ 𝑁 ln𝑁 − 𝑁 − 𝑁1 ln𝑁1 + 𝑁1 − 𝑁2 ln𝑁2 + 𝑁2

= [𝑁 − 𝑁2 (𝑥 − 1)] ln𝑁 − 𝑁1 ln𝑁1 − 𝑁2 ln𝑁2
+ (𝑁1 + 𝑁2 − 𝑁) + 𝑁2 (𝑥 − 1) ln (𝑧 − 1)

= (𝑁1 + 𝑁2) ln (𝑁1 + 𝑥𝑁2) − 𝑁1 ln𝑁1 − 𝑁2 ln𝑁2
− 𝑁2 (𝑥 − 1) [1 − ln (𝑧 − 1)]

先保留此形式不动，我们再考虑在混合前，溶剂和聚合物纯组份的熵。这可以分别令上式的 𝑁1 = 0和 𝑁2 = 0
得到：

lnΩ1 = 0,
lnΩ2 = 𝑁2 ln (𝑥𝑁2) − 𝑁2 ln𝑁2 − 𝑁2 (𝑥 − 1) [1 − ln (𝑧 − 1)]

因此混合熵变就是

Δmix𝑆 = 𝑘B [lnΩc,溶液 − lnΩc,纯组份]
= 𝑘B (lnΩc,溶液 − lnΩ1 − lnΩ2)
= 𝑘B [(𝑁1 + 𝑁2) ln (𝑁1 + 𝑥𝑁2) − 𝑁1 ln𝑁1 − 𝑁2 ln (𝑥𝑁2)]
= 𝑘B (𝑁1 ln

𝑁1 + 𝑁2𝑥
𝑁1

+ 𝑁2 ln
𝑁1 + 𝑁2𝑥

𝑁2𝑥
)

= −𝑘B (𝑁1 ln 𝜑1 + 𝑁2 ln 𝜑2) (3.2)

其中，𝜑1 = 𝑁1/(𝑁1 + 𝑁2𝑥) 是溶剂的体积分数，𝜑2 = 𝑁2𝑥/(𝑁1 + 𝑁2𝑥) 是高分子链的体积分数（前提是格子体
积都相等，所以约掉了格子体积）。式(3.2)就是我们通过格子模型和上述的讨论得出 𝑁1个溶剂小分子和 𝑁2个
聚合度为 𝑥 的高分子的混合熵变表达式。
拿式(3.2)与 𝑁1个溶剂小分子和 𝑁2个溶质小分子的理想溶液混合熵变式（(1.8)）相比，有

Δmix𝑆 (𝑁1, 𝑁2) ≤ Δmix𝑆id (𝑁1, 𝑁2)

当且仅当 𝑥 = 1时取等号。换句话说，溶解高分子比溶解小分子熵增加更多。多出来的熵，从数学形式上来自
聚合度 𝑥，从物理意义上则来自高分子链本身的构象熵，这是小分子所不具有的。但是，式(3.2)与 𝑁1个溶剂小
分子和 𝑥𝑁2个溶质小分子的理想溶液混合熵变式相比又有

Δmix𝑆 (𝑁1, 𝑁2) < Δmix𝑆id (𝑁1, 𝑥𝑁2) = −𝑘B (𝑁1 ln
𝑁1

𝑁1 + 𝑥𝑁2
+ 𝑥𝑁2 ln

𝑥𝑁2
𝑁1 + 𝑥𝑁2

)

说明高分子的 𝑥 个链段终究比不上 𝑥 个完全独立的小分子，这是高分子链的连接性所带来的限制。

3.2 高分子溶液的混合焓

类似 §2.2，我们在 Δmix𝑉 = 0的假定条件下，有 Δmix𝐻 = Δmix𝑈，而 Δmix𝑈 通过混合前后的相邻分子对数
目变化来计算。在考虑这个问题时我们仍然采用平均场近似。
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无论如何放置高分子链段和溶剂分子，每条链的周围，一共有 (𝑧 − 2) 𝑥 + 2个可放置其他分子的相邻格
子。按照平均场假定，这些相邻格子中的每一个放置溶剂“1”分子的概率都等于整个溶液的溶剂浓度，即 𝜑1。
所以，平均每条链周围形成的 [1 − 2]相邻分子对的个数是：

[(𝑧 − 2) 𝑥 + 2] 𝜑1
总共有 𝑁2条链，则溶液总共形成的 [1 − 2]相邻分子对的个数是：

𝑁2 [(𝑧 − 2) 𝑥 + 2] 𝜑1
同理，每个高分子链段周围形成的 [2 − 2]相邻分子对的个数是：

𝑃22 = 1
2 (𝑧 − 2) 𝑁2𝜑2

带 1/2是因为使用总数 𝑁2 时重复计算了每一对 [2 − 2]相邻分子对。溶剂分子周围形成的 [1 − 1]相邻分子
对的个数是：

𝑃11 = 1
2𝑧𝑁1𝜑1

把每个分子对相应的势能 𝜀𝑖𝑗 乘到上面的个数并加起来得到高分子溶液的总内能为：

𝑈溶液 = 𝑁2 [(𝑧 − 2) 𝑥 + 2] 𝜑1𝜀12 + 1
2 (𝑧 − 2) 𝑁2𝜑2𝜀22 + 1

2𝑧𝑁1𝜑1𝜀11
混合前，溶剂和溶质纯物质的内能可分别代入 𝑁2 = 0和 𝑁1 = 0到上式得到（注意此时 𝜑1和 𝜑2的值也要相应
变化）：

𝑈纯溶剂 = 1
2𝑧𝑁1𝜀11,

𝑈纯溶质 = 1
2 [(𝑧 − 2) 𝑥 + 2] 𝑁2𝜀22

因此混合内能变（也等于混合焓变）为：

Δmix𝐻 = Δmix𝑈 = 𝑈溶液 − 𝑈纯溶剂 − 𝑈纯溶质
= [(𝑧 − 2) 𝑥 + 2] 𝑁2𝜑1𝜀12 − 1

2 [(𝑧 − 2) 𝑥 + 2] 𝑁2𝜀22 − 1
2𝑧𝑁1𝜀11

在这里，我们可以采用以下两个假定使得上式能表示成仅含交换能 Δ𝜀 的简单形式。首先，假定高分子链段数
𝑥 很大，于是中括号系数内的“+2”可忽略，这样通过 𝑥𝑁2𝜑1 = 𝑁1𝜑2 的恒等关系能把 𝑥 吸收掉∗。其次，在上一

小节计算熵变时，曾使用“𝑧 与 𝑧 − 1差别不大”的近似，说明 𝑧 很大，因此 𝑧 与 𝑧 − 2的差别也不大。大多数教
材保留 𝑧 − 2而不是 𝑧，我们在此保持与教材一致。基于这两个假定，上式化简为：

Δmix𝐻 = (𝑧 − 2) 𝑁1𝜑2Δ𝜀

再令

𝜒12 = (𝑧 − 2) Δ𝜀
𝑘B𝑇

就有

Δmix𝐻 = 𝑘B𝑇𝜒12𝑁1𝜑2 (3.3)

结合我们对混合焓变和混合熵变的推导结果式，高分子溶液的混合吉布斯自由能变是

Δmix𝐺 = 𝑘B𝑇 [𝑁1 ln 𝜑1 + 𝑁2 ln 𝜑2 + 𝜒12𝑁1𝜑2] (3.4)

∗𝑥𝑁2𝜑1 = 𝑥𝑁1𝑁2/𝑁 = 𝑁1 (𝑁1 + 𝑥𝑁2 − 𝑁1) /𝑁 = (𝑁1 − 𝑁1𝜑1) = 𝑁1𝜑2
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第三讲 高分子溶液的格子模型 3.2 高分子溶液的混合焓

把玻尔兹曼常数 𝑘B换成气体常数 𝑅，则分子个数 𝑁𝑖就相应换成物质的量 𝑛𝑖即可。注意到，当 𝑥 = 1时，𝜑𝑖 = 𝑥𝑖，
上式退回到式(2.7)。得出 Δmix𝐺 的具体形式是溶液热力学进一步应用的基础。我们将在后续讲义继续讨论。
作为本讲的最后我们只讨论上式对 Δmix𝐺 的符号的影响。
无论是小分子的混合熵（式(2.6)）还是高分子的混合熵（式(3.2)）在整个浓度范围内都是正值——混合导

致熵增。这会给混合自由能贡献负值，对混合过程有利。而混合焓变主要依赖交换能 Δ𝜀，它表示混合前、后内
能的变化。如果 Δ𝜀 > 0,那么混合焓将给混合自由能贡献正值，不利于混合，但要看定量上是否超过了混合熵
的贡献。如果 Δ𝜀 < 0，那么混合焓将给混合自由能贡献负值，有利于混合。温度只是上述因素之外的因子，只
改变 Δmix𝐺 的绝对值，而不改变其符号。
除上一讲末尾总结的那些假定之外，本讲没有重要的新增假定，在这里总结如下：

• 所有高分子链的链段数或聚合度 𝑥 相同。多分散聚合物溶液的情况在格子模型的简化下与多组份混合
物是一样的问题。多组份混合物的混合熵，有直接而方便的形式：

Δmix𝑆 = −𝑘B∑
𝑖
𝑁𝑖 ln 𝜑𝑖

其中 𝜑𝑖 ≡ 𝑥𝑖𝑁𝑖/∑𝑖 𝑥𝑖𝑁𝑖，𝑥𝑖 是组份 𝑖的聚合度，𝑖遍数每一个组份。如果是同种聚合物的多分散溶液，则混
合焓也有直接而方便的形式：

Δmix𝐻 = 𝑘B𝑇𝜒12𝑁1∑
𝑖
𝜑𝑖

对于两种聚合物的共混体系，混合焓的形式是

Δmix𝐻 = 𝑘B𝑇𝜒12𝑁1𝑥2𝜑2

这个形式是可以用本讲的方法推导出来。至于多组份混合物的混合焓，由于不同化学物种之间的相互

作用势能都不同，故至少需要考虑每对 [𝑖 − 𝑗]相邻分子对的交换能的贡献，甚至还要考虑交叉项的影响。
有兴趣的可参阅相关研究综述[4-5]。

• 𝑧 → ∞。在推导过程中多次使用了“𝑧 与 𝑧 − 1、𝑧 − 2差别不大”这一主张。事实上 Flory–Huggins模型

得到的形式，对应于精确式∗的 𝑧 → ∞的极限情况。在上一讲说过，3维空间硬球最紧密堆积的配位数是
12,通常平均配位数考虑的取值范围在 6至 12，因此很难认为 𝑧很大。所幸的是，通过精确结果的计算发
现，不同 𝑧值的结果之间的差别，在 𝑧 > 4之后就很小了，与 𝑧 → ∞的结果也很接近。此时 Flory–Huggins

的模型的结果有数学形式简单的优势。后世基本以 Flory–Huggins模型的形式为基础作进一步的理论

推广。

∗见《高分子物理补充讲义》。
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第四讲 高分子溶液的化学势

在定温定压下溶液的混合吉布斯自由能 Δmix𝐺 仅为溶液浓度的函数，Δmix𝐺 对浓度求导就得到化学势。
在《物理化学》的学习中我们知道，有了化学势，我们可以得到理想稀溶液的各种依数性（即溶剂的冰点降低、

沸点升高和液的渗透压的浓度依赖性）。但是，高分子溶液的讨论重点恰恰是它的非理想性,因此我们聚焦于

真实溶液的依数性，对于渗透压就是要讨论它的位力展开式。第一讲已经介绍过从化学势推出渗透压的一般

过程，以及位力展开式的形式。本讲我们利用 Flory–Huggins模型得到的 Δmix𝐺表达式，来具体地推导渗透压
的位力展开式，并讨论位力系数的物理意义。

4.1 位力系数的物理意义

在《物理化学》中我们了解到，真实气体的状态方程可以写成位力（virial）展开式

𝑝𝑉m = 𝑅𝑇 + 𝐵𝜌 + 𝐶𝜌2 + ⋯

其中 𝑉m ≡ 𝑉/𝑛 是气体的摩尔体积，𝜌 ≡ 𝑉−1
m 是气体的物质的量密度

†，𝐵、𝐶、……等称为第二、三、……位力系
数。可见当 𝐵 = 𝐶 = ⋯ = 0时上式就是理想气体状态方程，因此真实气体状态方程的位力展开式表达的是当
气体密度不那么低时，其行为相对于理想气体的偏离。J. Mayer从统计力学出发严格展示了位力系数与分子

间作用力的直接关系：第二位力系数是分子间的二体相互作用势的平均大小，第三位力系数则与分子间的三

体相互作用势有关，依此类推。因此，随着气体密度不断增加，分子间的二体、三体、……相互作用势对气体行

为的影响也越来越大，气体行为也就越来越偏离理想气体。

溶液体系的渗透压在极稀情况近似满足范托夫方程，随着溶质浓度的增加，溶液的渗透压对浓度的依赖

关系逐渐偏离范托夫方程的行为，也可以写成类似的展开式(1.15)或(1.16)。而且W. McMillan和前面提到的 J.

Mayer一齐从统计力学出发严格推导出渗透压展开式的系数与溶质、溶剂多体相互作用的严格关系。由于表

面上渗透压的公式很像是把溶质当作气体分子的气体状态方程，因此人们也类似地称渗透压的上列展式形

式为“位力展开”，相应的系数称“渗透压的位力系数”。

关于位力系数的详细讨论超出了本课的范围。以下是一些值得注意的基本结论：

• 稀溶液与气体的类比并不可靠。气体压强 𝑝 的微观根源是气体分子撞击容器壁的平均冲量，但渗透压
的微观根源不是溶质分子撞击半透膜的平均冲量。

•“位力系数”一词只是一般地指位力展开式的系数。展开式的自变量可以是体积分数、物质的量浓度、

质量浓度等不同的浓度变量。关于不同变量的位力系数也是不同的，但不影响位力系数的上述一般

物理意义。为了区分，关于物质的量浓度的位力系数记为 𝐵𝑖，关于质量浓度的位力系数记为 𝐴𝑖（见
式(1.15)和(1.16)）。

• θ条件的定义。渗透压的高次位力系数的微观根源不是溶质分子间相互作用势本身，而是溶质-溶质、溶

质-溶剂、溶剂-溶剂相互作用势的差别。以第二位力系数为例：

𝐴2 ∼ 𝜀12 − 1
2 (𝜀11 + 𝜀22) ∼ Δ𝜀

†参见《物理化学》§1.8“其他状态方程式”
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4.2 从 FLORY–HUGGINS理论得到溶液的渗透压 第四讲 高分子溶液的化学势

因此，若忽略高次项，则当 𝐴2 > 0时，溶质更愿意与溶剂相邻，即该溶剂对于该溶质而言是良溶剂；反之，
若 𝐴2 < 0，则该溶剂对于该溶质而言是非良溶剂。𝐴2 = 0是一个分界情况。定温定压下，如果某溶液稀
溶液行为满足 𝐴2 = 0，则称整个条件为θ条件（theta condition）。作为关于浓度的展开式系数，它本身不

依赖浓度，只依赖温度和压强。不同化学组成的溶液的行为当然也不同，针对同种聚合物的溶液，第二

位力系数也取决于溶剂。因此，第二位力系数的取值代表着一组温度、压强和溶剂种类的三元条件。在

室压下，θ条件的温度称 θ温度，θ条件中的溶剂叫 θ溶剂。

4.2 从 Flory–Huggins理论得到溶液的渗透压

由式(1.14)和(3.4)我们需要计算以下偏导数

Δmix𝜇1 = 𝑅𝑇 𝜕
𝜕𝑛1

[𝑛1 ln 𝜑1 + 𝑛2 ln 𝜑2 + 𝜒12𝑛1𝜑2]|
𝑇 ,𝑝,𝑛2

注意到 𝜑1 = 𝑛1/(𝑛1 + 𝑥𝑛2)，故
𝜕𝜑1
𝜕𝑛1

|
𝑇 ,𝑝,𝑛2

= − 𝑛1
(𝑛1 + 𝑥𝑛2)2 + 1

𝑛1+𝑥𝑛2
= 1

𝑛1 + 𝑥𝑛2
(1 − 𝜑1)

= 𝜑2
𝑛1 + 𝑥𝑛2

类似有

𝜕𝜑2
𝜕𝑛1

|
𝑇 ,𝑝,𝑛2

= 𝜕
𝜕𝑛1

(1 − 𝜑1)|
𝑇 ,𝑝,𝑛2

= − 𝜕𝜑1
𝜕𝑛1

|
𝑇 ,𝑝,𝑛2

= − 𝜑2
𝑛1 + 𝑥𝑛2

因此

Δmix𝜇1 =𝑅𝑇 𝜕
𝜕𝑛1

(𝑛1 ln 𝜑1 + 𝑛2 ln 𝜑2 + 𝜒12𝑛1𝜑2)|
𝑇 ,𝑝,𝑛2

=𝑅𝑇 [ln 𝜑1 + 𝑛1 1
𝜑1

𝜑2
𝑛1 + 𝑥𝑛2

+ 𝑛2 1
𝜑2

(− 𝜑2
𝑛1 + 𝑥𝑛2

)

+𝜒12𝜑2 + 𝜒12𝑛1 (−
𝜑2

𝑛1 + 𝑥𝑛2
)]

=𝑅𝑇 [ln 𝜑1 + 𝜑2 − 1
𝑥 𝜑2 + 𝜒12𝜑2 − 𝜒12𝜑1𝜑2]

=𝑅𝑇 [ln (1 − 𝜑2) + (1 − 1
𝑥 ) 𝜑2 + 𝜒12𝜑22]

此即书上的式 (3-19a)。由此按照式(1.14)进一步计算渗透压式就得到

Π = −Δmix𝜇1
𝑉 ∗
m,1

= − 𝑅𝑇
𝑉 ∗
m,1

[ln (1 − 𝜑2) + (1 − 1
𝑥 ) 𝜑2 + 𝜒12𝜑22]

此即书上的式 (3-20a)。这是 Flory–Huggins理论得到的渗透压完整形式。为了得到其位力系数，我们需要对

该式作关于浓度的位力展开。我们先作关于体积分数 𝜑2 在 𝜑2 = 0附近的展开∗，再把 𝜑2 换成质量浓度 𝐶2，得
∗如果函数 𝑓 (𝑥)在其定义域上处处光滑，则它在点 𝑥 = 𝑎附近的泰勒展开式为

𝑓 (𝑥) =
∞
∑
𝑛=0

𝑓 (𝑛) (𝑎)
𝑛! (𝑥 − 𝑎)𝑛
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第四讲 高分子溶液的化学势 4.2 从 FLORY–HUGGINS理论得到溶液的渗透压

出关于质量浓度的第二位力系数 𝐴2 的 Flory–Huggins表达式。观察上式发现，唯一一项不是 𝜑2 的次幂形式
的项是 ln (1 − 𝜑2)项，其在 𝜑2 = 0附近的展开是

ln (1 − 𝜑2) = −𝜑2 − 1
2𝜑

22 − 1
3𝜑

32 − ⋯

略去 𝜑32 及更高次项代入渗透压式，整理得到

Π = − 𝑅𝑇
𝑉 ∗
m,𝑖

[ 1𝑥 𝜑2 + (12 − 𝜒12) 𝜑22 + ⋯]

此即书上的式 (3-20b)。为了求聚合物的体积分数 𝜑2 与质量浓度 𝐶2 的关系，我们注意到一个格子的体积就是
一个溶剂分子的体积 𝑉 ∗

m,𝑖/𝑁A，因此

𝜑2 =
𝑥𝑛2𝑁A𝑉 ∗

m,1
𝑁A𝑉 ∗

m,1 (𝑛1 + 𝑥𝑛2)
= 𝑥𝑛2𝑉 ∗

m,1
𝑉 = 𝑥𝑉 ∗

m,𝑖
𝑀 𝐶2

代入到渗透压关于体积分数的展开式中得到

Π = 𝑅𝑇
𝑉 ∗
m,1

[𝑉
∗
m,1
𝑀 𝐶2 + (12 − 𝜒12)

𝑥2 (𝑉 ∗
m,1)

2

𝑀2 𝐶2 + ⋯]

= 𝑅𝑇 [ 𝐶
𝑀 + (12 − 𝜒12)

(𝑉 ∗
m,2)

2

𝑉 ∗
m,1𝑀2𝐶2 + ⋯]

此即书上的式 (3-20c)。其中 𝑉 ∗
m,2是溶质（聚合物）的摩尔体积，它与 𝑉 ∗

m,1的关系 𝑉 ∗
m,2 = 𝑥𝑉 ∗

m,1是按格子理论模
型假定得到的。上式与式(1.16)对比可知，Flory–Huggins理论得到的渗透压的第二位力系数为

𝐴2 = (12 − 𝜒12) 1
𝜌22𝑉 ∗

m,1

其中 𝜌2 ≡ 𝑀/𝑉 ∗
m,2 是聚合物的密度。此即书上的式 (3-21)，它是 Flory–Huggins理论给出的渗透压的第二位力

系数表达式。虽然这个表达式是关于质量浓度的位力系数，但是我们应该能注意到，不同浓度变量的第二位

力系数都会含有 1/2 − 𝜒12这个因子，差别只在浓度变量间的换算系数。按照之前介绍的 θ温度的定义以及第
二位力系数的物理意义，在给定温度 𝑇 下，

• 𝜒12 < 1
2 ⇔ 𝐴2 > 0 ⇔良溶剂

• 𝜒12 > 1
2 ⇔ 𝐴2 < 0 ⇔不良溶剂

• 𝜒12 = 1
2 ⇔ 𝐴2 = 0 ⇔ θ溶剂、θ温度

书中的表 3-5列出了一些聚合物的 θ溶剂和 θ温度。至于为什么把 𝐴2 ≠ 0解读为溶剂的良或不良，书上的
§3.3已经讲得比较清楚。
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第五讲 高分子溶液的相图

5.1 液–液相图的基本特点

𝑥𝑥2

𝑇𝑇

一相

两相

不稳区

双节线

旋节线

𝑇𝑇c,𝑥𝑥2,c

亚稳区

图 5.1: 液–液相图的基本特点

给定压强下，一个二组份液态混合物的温度–组成相图包括以下重要特征：

• 临界点（critical point）：是相图中的一个特定点，其坐标记为 (𝑇c, 𝑥2,c)。以右图为例，当温度 𝑇 > 𝑇c 时，溶
液在任何组成都呈一相；

• 共存曲线（coexistence curve）或双节线（binodal curve）：以右图为例，它是在 𝑇 < 𝑇c的区域。平均组成处于
这些区域内的体系将无法保持一相，分成浓、稀两相。把不同温度下的两相组成点连成曲线就是双节线。

双节线把整个相图分为一相区和两相区；

• 稳定界限（stability limit）或旋节线（spinodal）:我们把双节线下的区域分成了“不稳定”和“亚稳”两个部

分。这两状状态的意义将在下一节说明。

5.2 液–液相分离的热力学条件

完整给定一个双组份混合物体系的状态，需要同时确定 (𝑇 , 𝑝, 𝑛1, 𝑛2)。作为状态函数的吉布斯自由能 𝐺 =
𝐺 (𝑇 , 𝑝, 𝑛1, 𝑛2)。假定总摩尔数恒定，则 𝐺 = 𝐺 (𝑇 , 𝑝, 𝑥2)。吉布斯自由能又同时是定温定压定组成下混合物体系
的热力学势函数，也就是说它的变化 Δ𝐺 的符号决定了相应两状态间过程的自发方向。我们现在考虑的过程
是混合过程，因此具体关心的是 Δmix𝐺 的符号。
在很多问题当中我们并不同时控制每一个状态变量。例如在溶液问题中，我们通常控制温度和压力恒定，

但溶液的组成可以容许体系自由探索“最佳值”。

体系“自由探索”不同的组成的过程，实际上是考虑了组成在体系内部的涨落。就算我们配制混合物时
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5.3 双节线求算的共切线法 第五讲 高分子溶液的相图

给定了总体平均浓度，体系仍然在微观局部通过涨落来探索偏离这个平均浓度的不同浓度（如图5.2所示）。

𝑥𝑥2

𝑥𝑥2 + 𝛿𝛿𝑥𝑥2𝑥𝑥2 − 𝛿𝛿𝑥𝑥2

图 5.2: 平衡态下溶液体系的局部浓度涨落示意图。

这里的“最佳”对应吉布斯自由能关于组成的某个极小值。因为在这个状态下，无论组成往哪个方向偏

离，都是一个 Δ𝐺 > 0的热力学不利过程，因此总会反过来自发地回到这个状态。我们把这种状态称为热力学
稳定（thermodynamically stable）状态。在我们关心的溶液问题中，当平均组成为 𝑥2 的体系在某温度 𝑇 下分相
成组成为 𝑥′2 和 𝑥′′2 的两相，比保持组成为 𝑥2的一相具有更低的吉布斯自由能，那体系就会自发地分成这样的
两相。

换句话说，初态是两组份混合前的纯物质态，在定温定压下制备总组成为 𝑥2的溶液，就算 Δmix𝐺 为负，体
系未必保持稳定的一相，还要看 (𝑇 , 𝑝, 𝑥2)对应的 Δmix𝐺 是否是一个极小值。如果不是极小值，体系就会自发
地分成两相。

按照函数极小值的数学判据，混合物吉布斯自由能关于的极小值的充分必要条件是：

𝜕𝐺
𝜕𝑥2

|
𝑇 ,𝑝

= 0, 𝜕2𝐺
𝜕𝑥22

|
𝑇 ,𝑝

> 0

这相当于自由能对浓度的曲线有“开口向上”的形状。注意到，由于混合前的纯物质状态的吉布斯自由能是

定值，因此 𝜕𝑛𝐺/𝜕𝑥𝑛2 |𝑇 ,𝑝 = 𝜕𝑛Δmix𝐺/𝜕𝑥𝑛2 |𝑇 ,𝑝。另一方面，也要注意到吉布斯自由能对组成的偏导数就是化学势。

5.3 双节线求算的共切线法

原则上上一小节得出的分相条件可供我们从一个给定表达式的 𝐺 (𝑇 , 𝑝, 𝑥2)函数（比如 Flory–Huggins理

论的式(3.4)）推出它预测的相图上的双节线。我们将会看到实际求解是困难的，但我们可以通过几何方法（共

切线法）来解决这个问题。

假定一个总组成在 𝑥2 的溶液在温度 𝑇 下要分相，它分相到什么组成 𝑥′2 和 𝑥′′2 呢？按照相平衡判据，这两
相要满足以下等式：

𝜇′𝑖 = 𝜇′′𝑖 , 𝑖 = 1, 2

在定温定压问题下，我们由两相两组成化学势相等得出如下方程组：

{ 𝜇′1 (𝑥′2) = 𝜇′′1 (𝑥′′2 )
𝜇′2 (𝑥′2) = 𝜇′′2 (𝑥′′2 )
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第五讲 高分子溶液的相图 5.3 双节线求算的共切线法

Δ𝜇𝜇′1, Δ𝜇𝜇′′1 Δ𝜇𝜇′2, Δ𝜇𝜇′′2

Binodal
Δ𝜇𝜇′1 = Δ𝜇𝜇′′1
Δ𝜇𝜇′2 = Δ𝜇𝜇′′2

Spinodal
𝜕𝜕2∆mix𝐺𝐺m
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

= 0

Δmix𝐺𝐺m
𝑇𝑇 = 𝑇𝑇1

𝑥𝑥2

𝑇𝑇1

𝑇𝑇c

𝑥𝑥𝑥2 𝑥𝑥𝑥𝑥2

a b

图 5.3: 从自由能曲线到相图的几何关系。该图的横坐标是溶质的摩尔分数 𝑥2。纵坐标分为上、下部分。上部分是摩尔混合吉布
斯自由能 Δmix𝐺m，下部分是温度 𝑇。在上部分中，我们画出了温度在 𝑇 = 𝑇1时的 Δmix𝐺m关于 𝑥2的曲线（实线）。该曲线的两个极
小值的共切线（点划线）。下部分给出了双节线（实线）和旋节线（虚线）。其中温度 𝑇 = 𝑇1 的双节线组成 𝑥 ′2 和 𝑥 ′′2 与上部分的共

切点对应；旋节线组成与上部分曲线的拐点 a、b对应。其余信息的意义见讲义正文。

视 𝑥′2 和 𝑥′′2 为未知数，解这个方程组就能得到分相的两相组成。但是实际上化学势的表达式中常含有自然对
数项，上列方程通常是超越方程（transcendental equation），无法解析求解。以下我们介绍的共切线法可以用几

何手段求解。

由偏摩尔量的加和性，对分相后的任一相我们均有：

Δmix𝐺 = 𝑛1Δmix𝜇1 + 𝑛2Δmix𝜇2
⇒ Δmix𝐺m = (1 − 𝑥2) Δmix𝜇1 + 𝑥2Δmix𝜇2 = Δmix𝜇1 + 𝑥2 (Δmix𝜇2 − Δmix𝜇1)

其中 Δmix𝐺m ≡ Δmix𝐺/ (𝑛1 + 𝑛2)是混合摩尔吉布斯自由能。考虑直线 𝑦 = 𝑘𝑥′2 + 𝑏，其中 𝑦 = Δmix𝐺，𝑥′2 是其中
一相的组成，截距 𝑏就是 𝑥2 = 0时的 Δmix𝐺（如图5.3所示）。那么对于其中一相，这条曲线总满足

Δmix𝐺m = 𝑘𝑥′2 + 𝐵 = Δmix𝜇1 (𝑥′2) + 𝑥′2 [Δmix𝜇2 (𝑥′2) − Δmix𝜇1 (𝑥′2)]

故

𝑏 = Δmix𝜇1 (𝑥′2) , 𝑘 = Δmix𝜇2 (𝑥′2) − Δmix𝜇1 (𝑥′2)

对于另一相也是一样的。因此，相平衡要求的条件 𝜇′1 = 𝜇′′1 和 𝜇′2 = 𝜇′′2 等价于使 𝑥′2、𝑥′′2 两点处的 Δmix𝐺m 与
同一条直线相切。换句话说，分相条件等价于在 Δmix𝐺m 的曲线上找到两个局部极小值点的一条共切线。如
图5.3所示，在一系列温度的 Δmix𝐺m关于 𝑥2的曲线上以共切线法找出 𝑥′2和 𝑥′′2 ，它们在 𝑇–𝑥2平面上连成的曲
线就是双节线。

显然，溶液在给定温、压下能分成两相，其自由能关于浓度的曲线必须要有两个“开口向上”的局部极小

值。给定一个 𝐺 = 𝐺 (𝑇 , 𝑝, 𝑥2)函数，固定压强 𝑝，它在不同温度 𝑇 下关于 𝑥2的曲线形状是否存在这样的双局部
极小值，就决定了溶液在该温度下是否能分相。图5.1或5.3所示的相图形式，就是 𝐺 = 𝐺 (𝑇 , 𝑝, 𝑥2)总在某个临界
温度 𝑇c以下才有双局部极小值的结果。这种相图形式称为上临界溶解温度（upper critical solution temperature，

UCST）型相图（图5.4a）。也有一些体系的相图是下临界溶解温度（lower critical solution temperature，LCST）型的，

即只有在某个临界温度 𝑇c 以上才有双局部极小值（图5.4b）。还有一些体系的相图则同时具有 UCST和 LCST

两种特征（图5.4c），随着 UCST和 LCST的大小关系不同还会有沙漏型（图5.4d）、闭环型（图5.4e）等不同形式。
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5.4 亚稳定态和旋节线 第五讲 高分子溶液的相图

图 5.4: 不同类型的液–液相图[6]。

5.4 亚稳定态和旋节线

前面说过，在定温定压下，给定总体平均浓度 𝑥2 探索不同浓度的方式是通过微观局域浓度的涨落。如
图5.2所示，由于分子运动，在很短的时间内，体系的浓度会在很小的范围内偏离宏观平均值。一个总组成为 𝑥2
的溶液，但凡局域浓度正偏 𝑥2 + 𝛿𝑥2 或负偏离 𝑥2 − 𝛿𝑥2 都让自由能增大的话，这些区域会又自发回到 𝑥2，体系
总体保持平均浓度为 𝑥2 稳定均相。反之，如果对于某些局部，浓度偏离 𝑥2，自由能反而降低了，那么这些区域
就会自发地往使自由能降低的方向进一步偏离 𝑥2，直到进入一个新的稳定状态。那么原本这样的状态就是不
稳定的。所谓亚稳态，则是指体系在总组成 𝑥2 附近的涨落幅度需要够大、越过一个自由能势垒，才失去稳定
性的状态。因此，在亚稳态的稳定性依赖涨落的幅度。如果涨落幅度不够大，外界扰动可仍可帮助体系越过能

垒，现象上表现为体系对外界扰动很敏感。

既然稳定的数学判据是

𝜕2𝐺
𝜕𝑥22

|
𝑇 ,𝑝

> 0

那么

𝜕2𝐺
𝜕𝑥22

|
𝑇 ,𝑝

= 0

就是稳定性失效的边界。这个判据对应着自由能关于浓度曲线的拐点。如图5.3所示，a、b是两个拐点，𝑥′2 到
a、b到 𝑥′′2 的连线范围内，自由能曲线都是“开口向上”的。如果体系的总体平均组成 𝑥2 落在这些范围内，那
么当溶液组成涨落幅度不大时，可保持长时间稳定（即整个体系都只在某一个局部极小值附近涨落）；一旦体

系某局部的涨落幅度超过 a或 b，则快局部就会从一个局部极小值区域跃到另一个局部极小值区域，体系分

相。由于涨落是随机的，在一定的平均涨落幅度下，大的涨落是只是小概率事件，并非永不发生。因此，亚稳

态假以时日终必变至稳态。处于亚稳态下的溶液就算暂时不分相，时间一长也会分相。外界扰动能给体系局

部“助力”，使其更易越过势垒，可以加速这个分相过程。由以上分析可见，拐点 a、b所对应的组成就是亚稳态

28 更新至 2025-09-21



第五讲 高分子溶液的相图 5.5 临界点

的界限，所以叫稳定界限。不同温度下的自由能曲线的这种拐点的连线就形成相图空间 𝑇–𝑥2上的旋节线（见
图5.3）。

少量大涨落区域越过亚稳态界限，就率先局部分相。这样的区域将随着时间累积增多、长大。这个过程叫

成核生长（nucleation-and-growth），这是亚稳区体系分相的动理学特点。若体系恰好处于亚稳界限组成，则由

于浓相和稀相成核代价相当，体系会形成特殊的双连续相（bicontinuous phase）结构，称为旋节线分离（spinodal

decomposition）。

由于自由能的二阶导数对应着化学势的一阶导数，化学势表达式中常含有的自然对数项在亚稳界限判

据式中就不出现了，所以用这个式子求解旋节线是简单而直接的数学问题。

5.5 临界点

临界点是两个拐点的合并点，因此它满足拐点处的变化率相同，所以临界点除满足拐点判据式外，还要满

足

𝜕
𝜕𝑥2

(𝜕
2𝐺
𝜕𝑥22

)|
𝑇 ,𝑝

= 0

5.6 格子理论的溶液相图预测

前面几节介绍的是液–液相图热力学的一般性知识。格子理论给出了小分子溶液和高分子溶液的混合吉

布斯自由能表达式（式(2.7)和(3.4)），我们可以用这些表达式来预测溶液的相图。

首先我们来讨论小分子溶液的情况。由式(2.7)可得到

Δmix𝜇2
𝑅𝑇 = 1

𝑅𝑇
𝜕Δmix𝐺
𝜕𝑛2

|
𝑇 ,𝑝,𝑛1

= ln 𝑥2 + (1 − 𝑥2)2 𝜒12

稳定界限（旋节线）要满足：

𝜕
𝜕𝑥2

(Δmix𝜇2
𝑅𝑇 )|

𝑇 ,𝑝
= 0 = 1

𝑥2
− 2 (1 − 𝑥2) 𝜒12

⇔𝑇 = 𝑧Δ𝜀
2𝑘B

𝑥2 (1 − 𝑥2) , 𝑇 > 0

该式就是旋节线在 𝑇–𝑥2 平面上的曲线，其中用到了 𝜒12 的定义式(2.3)。由于 𝑇 是热力学温度，所以必须大于
零，即上式只有 Δ𝜀 > 0时有效，此时上式就是一个开口向下的抛物线方程，顶点在 𝑥2 = 1/2处。
临界点除上式外还要满足

𝜕
𝜕𝑥2

[ 1𝑥2
− 2 (1 − 𝑥2) 𝜒12]|

𝑇 ,𝑝
= 0 = − 1

𝑥22
+ 2𝜒12

联立这两个方程可以解出临界点是 𝑥2,c = 1/2，𝜒12,c = 2。由 𝜒12 的定义式(2.3)得到 𝑇c = 𝑧Δ𝜀/(2𝑘B)。由这个结
果可以看到，临界温度与交换能 Δ𝜀 成正比。且当 Δ𝜀 ≤ 0时，溶液在所有温度都呈一相。
双节线无法解析求算，但我们至少知道，溶液分相需要自由能关于浓度的曲线有两个局部极小值。我们

把混合熵变和混合焓变分开察看。式(2.4)除以总摩尔数 𝑛可得到摩尔混合焓变，写成关于 𝑥2的函数形式是

Δmix𝐻m = 𝑘B𝑇𝜒12𝑥2 (1 − 𝑥2)

是一个开口向下的抛物线。式(2.6)除以总摩尔数 𝑛可得到摩尔混合熵变，写成关于 𝑥2的函数形式是

Δmix𝑆m = −𝑘B [𝑥2 ln 𝑥2 + (1 − 𝑥2) ln (1 − 𝑥2)]
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5.6 格子理论的溶液相图预测 第五讲 高分子溶液的相图

对其再作关于 𝑥2 的一阶和二阶导数可知它对吉布斯的自由能贡献 −𝑘B𝑇Δmix𝑆m 在整个 0 < 𝑥2 < 1定义域上
都是“开口向上”的曲线。因此，混合熵和混合焓在混合吉布斯自由能曲线的“开口朝向”特征贡献上是竞争

关系。混合焓贡献的占比由 𝜒12 控制，𝜒12 只要大于某临界值，Δmix𝐺m 关于浓度的曲线就会产生一个“小山
包”，存在两个局部极小值。这个临界的 𝜒12就是临界点的 𝜒12,c = 2。

图 5.5: Flory–Huggins模型预测的双节线（实线）和旋节线（虚线）[7]，𝑇 = 400K。链段数：a. 𝑥 = 103；b. 𝑥 = 3 × 102；c. 𝑥 = 102。

高分子溶液的相图可按类似的方法由式(3.4)求出，推导过程留做练习。旋节线满足方程：

1
1 − 𝜑2

+ 1
𝜑2𝑥

− 2𝜒12 = 0

临界点是

𝜑2,c = 1
1 + √𝑥

≈ 1
√𝑥

, (5.1)

𝜒12,c = 1
2 (

1
𝑥 + 2

√𝑥
+ 1) (5.2)

其中临界组成的约等号在 𝑥 ≫ 1时适用。与小分子溶液的结果相比，高分子溶液的临界点浓度不再是 1/2,而
是与聚合度的平方根 √𝑥 成反比。当 𝑥 → ∞时，𝜑2,c → 0（如图5.5所示）。这说明，分子量高的高分子溶液会在

非常稀的浓度就分相。高分子溶液的临界 𝜒12,c 也不再是常数；随着聚合度增大，临界的 𝜒12,c 减小，亦即临界
温度 𝑇c 增大。当 𝑥 → ∞时 𝜒12,c → 1/2。这说明高分子量的高分子溶液会在较高的温度下分相，但对同种高
分子和溶剂（𝑧Δ𝜀 为定值）这个效应有一个上限。总体来说，分子量越大越容易分相。这种分子量依赖性为多
分散聚合物的分级（fractionation）提供了一种方法：随着温度的降低，聚合物按分子量由高到低依次从溶液中

析出。利用这种原理的分级方法一般称为分级沉淀（fractional precipitation）。

回顾关于渗透压的位力系数的章节，我们知道当 𝜒12 = 1/2时第二位力系数 𝐴2 = 0，它亦被解读为良溶剂
与不良溶剂的界线。现在我们又知道 𝜒12 = 1/2是高分子溶液临界点。当 𝜒12 < 1/2时，聚合物与溶剂完全相
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第五讲 高分子溶液的相图 5.7 FLORY–HUGGINS模型预测与实验结果的比较

容，而当 𝜒12 > 1/2时，溶液就存在分相的组成范围。这也丰富了所谓良溶剂与不良溶剂的概念。我们可以说，
Flory–Huggins模型所预测的溶液相分离临界温度就是 θ温度；𝜃 = 2𝑧Δ𝜀/𝑘B。

5.7 Flory–Huggins模型预测与实验结果的比较

(a)聚异丁烯在二异丁酮中的相图[8]。数字表示的是聚合物的分子量。

(b)聚苯乙烯在环己烷中的相图[8]。PSA至 PSD各级分的分子量分别

是：43600、89000、250000、1270000。

图 5.6: Flory–Huggins模型预测与实验结果的比较。𝑇p是浊点温度，𝜐2是聚合物的体积分数。虚线是 Flory–Huggins模型预测的

双节线。

Shultz和 Flory[8]通过浊点法测定了聚异丁烯在二异丁酮的溶液，以及聚苯乙烯在环己烷中的溶液的相

图（图5.6）。其中图5.6b也是书中的图 3-4、3-15（两个图是重复的，而且缺少理论预测曲线）。浊点法就是通过

记录不同组成的溶液在加热或冷却过程中出现浑浊的温度，在 𝑇 -𝜑2平面上作出双节线的相图测定方法。为了
研究相图的分子量依赖性，需要使用不同分子量的单分散试样。这些试样是通过分级沉淀得到的，而它们的

分子量要通过渗透压法或者光散射法测定，或者从这两种实验方法得到的 Mark–Houwink公式。因为这两种

方法是测定分子量的直接方法。

从图5.6可以看到，基于格子模型的 Flory–Huggins基本上正确地反映了这两种实际线形聚合物溶液的定

性行为：分子量越高，临界深度越小，同时临界温度越高（与图5.5类似）。特别地，Flory–Huggins预测的临界温

度与聚合度的关系式(5.2)满足 𝑇−1c ∝ 𝑥−1/2 + (1/2) 𝑥−1 的关系。这在图5.7a中得到了印证。但是，模型预测与

实验结果有较大的定量差别，主要体现在：理论低估了临界浓度，而且理论预测的两相区比实际窄得多。这种

定量差别是无法归咎于格子模型的假定、平均场假定等已知近似的；在现有表达形式下，至少需要令相互作用

参数 𝜒12依赖溶液组成，才有可能调节所预测的曲线使其与实验结果相符。
Flory–Huggins模型预测的是UCST型相图。但许多聚合物溶液乃至聚合物共混体系的相图可以呈图5.4中

的任一种。例如，聚苯乙烯在丙酮里的溶液是同时有 UCST和 LCST行为的。低分子量呈图5.4c的形态，随着

分子量增大，变成了图5.4d的形态（见图5.7b）。想要预测出 LCST行为，至少需要令 𝜒12依赖温度。
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5.7 FLORY–HUGGINS模型预测与实验结果的比较 第五讲 高分子溶液的相图

(a)图5.6实验的临界温度 𝑇c 与聚合度 𝑥 关系。实心点：聚异丁烯/二异丁

酮；空心点：聚苯乙烯/环己烷。

(b) 聚苯乙烯丙酮溶液的相图[9]。图中的数字是分子

量。

图 5.7: Flory–Huggins模型预测与实验结果的比较（续）。
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第六讲 相互作用参数的物理化学基础

在格子理论当中，我们引入了交换能 Δ𝜀，来概括不同化合物的溶液系统之间的差异。它的意义是微观的。
这虽然把宏观现象联系到了微观量上，但仍然没有进一步解释不同化合物之间的具体差异是从何而来的。

在上一讲我们看到了 Flory–Huggins模型在预测实际高分子溶液相行为方面的局限，并点出要使理论符

合实际，至少表面上需要令 𝜒12依赖组成和温度。
本讲主要解决这两个问题。

6.1 溶度参数理论

6.1.1 范德华作用势

根据之前的讨论，我们知道 𝜒12在 Δmix𝐺 中扮演的角色是表征混合焓贡献的占比。存在一个临界 𝜒12,c：

𝜒12,c = { 2, 𝑥 = 1 小分子溶液
1
2 , 𝑥 → ∞, 高分子溶液

当 𝜒12 > 𝜒12,c时，体系在某些组成下会发生相分离。无论是小分子还是大分子，𝜒12与 Δ𝜀 的关系都是
𝜒12 ∝ Δ𝜀

𝑇
之前介绍的格子理论推导，假定了仅最邻近两分子间的本互作用势是重要的。这在实际体系当中对应于分子

间仅存在色散力的情况，亦即非极性溶质和非极性溶剂的溶液。分子间的色散力又常称为范德华力。两个半

径为 𝑎的球状粒子间的范德华力相互作用势可简单地以下式表示：

𝜀𝑖𝑗 = −𝐴H,𝑖𝑗𝑎
6𝑟𝑖𝑗

其中 𝑖 = 1, 2表示溶剂或溶质，𝐴H,𝑖𝑗 是 Hamaker常数，𝑟𝑖𝑗 是分子间距。这个式子已经在第二讲中出现过。在格
子模型中，只考虑最邻近分子间的相互作用势，𝜀𝑖𝑗 = 𝑢𝑖𝑗 (2𝑎)，因此 𝜀𝑖𝑗 ∝ −𝐴H,𝑖𝑗，交换能就是

Δ𝜀 = 𝜀12 − 1
2 (𝜀11 + 𝜀22) ∝ − (𝐴H,12 − 1

2 (𝐴H,11 + 𝐴H,22))
范德华作用势的 Lifshitz理论表明，Hamaker常数与分子的极化率有关：

𝐴H,𝑖𝑗 ∝ 𝛼𝑖𝛼𝑗
其中 𝛼𝑖是组份 𝑖分子的极化率，具体地

𝐴H,11 ∝ 𝛼21 , 𝐴H,22 ∝ 𝛼22 , 𝐴H,12 ∝ 𝛼1𝛼2 ∝ √𝐴H,11𝐴H,22

进而有

𝜀12 ∝ −√𝜀11𝜀22
Δ𝜀 = 𝜖12 − 1

2 (𝜀11 + 𝜀22)

= −√𝜀11𝜀22 + 1
2 [(√|𝜀11|)

2 + (√|𝜀22|)
2]
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6.1 溶度参数理论 第六讲 相互作用参数的物理化学基础

所以，混合物交换能可以仅由两组份的纯物质性质 𝜀11和 𝜀22决定。而且由此式可知，Δ𝜀 ≥ 0，即 𝜒12 ≥ 0。

6.1.2 内聚能密度与溶度参数

我们可以进一步把 𝜀𝑖𝑖 联系到实验可测量。以组份 1纯物质为例，把原本排在格子里的分子全部拿走（挪
至两两距离无穷远处）所需要的总相互作用势，就是该组份的气化内能变 Δvap𝑈 ∗1。按格子模型考虑，孤立一
个分子，需要克服大小为 𝑧𝜀11/2的相互作用势。一共有 𝑁1个分子，因此总蒸发内能变就是

Δvap𝑈 ∗1 = −𝑧𝜀11
2 𝑁1

其中负号是因为蒸发过程是“克服”𝜀11的过程, 1/2是因为克服每对分子的相互作用我们能孤立两个分子。
定义内聚能密度（cohesive energy density，CED）

Δ𝐸𝑖 def=
Δvap𝑈 ∗

m,𝑖
𝑉 ∗
m,𝑖

= −𝑁A
𝑧𝜀𝑖𝑖
2𝑉 ∗

m,𝑖
def= 𝛿2𝑖

其中 Δvap𝑈 ∗
m,𝑖 是组份 𝑖纯物质的摩尔蒸发内能变，𝑉 ∗

m,𝑖 是组份 𝑖纯物质的摩尔体积，𝑁A 是阿伏伽德罗常数。𝛿𝑖
称为溶度参数（solubility parameter），这是 J. Hildebrand引入的，故又叫 Hildebrand溶度参数。若用溶度参数

来表出 𝜒12就是
𝜒12 = 𝑧Δ𝜀

𝑘B𝑇
= 𝑉 ∗

m,1
𝑅𝑇 (𝛿1 − 𝛿2)2 (6.1)

这里我们假定了 𝑉 ∗
m,1 = 𝑉 ∗

m,2 =格子体积。代入式(3.3)得到 Flory–Huggins模型的混合焓变的溶度参数表

达式

Δmix𝐻 = 𝑉 ∗
m,𝑖𝜑1𝜑2 (𝛿1 − 𝛿2)2

从该表达式可知 Δmix𝐻 ≥ 0。之前我们讨论过，混合焓变为正值，对混合吉布斯自由能的贡献就为正值，不利
于混合。因此，想要获得尽可能良的溶剂，就需要 𝛿1 与 𝛿2 尽可能接近。这是俗话所谓“相似相溶”的具体意
思。

6.1.3 溶度参数的测量方法

书上的表 3-1、3-2给出了各主要溶剂和聚合物的溶度参数。这些溶度参数都是怎么得到的？这里介绍一

些实验测量方法。首先，如果组份 𝑖是小分子，则 Δvar𝐻 ∗𝑖 可以通过热量计测量得到，𝑉 ∗
m,𝑖 可以通过密度测量得

到，因此 𝛿𝑖可以直接计算出来。但是，聚合物不气化，聚合物的溶度参数通常用以下方法估算。
如果已知溶剂（组份 1）的溶度参数 𝛿1，那么我们可以通过稀溶液的特性粘数 [𝜂]或交联网络的溶胀度来

估算聚合物（组份 2）的溶度参数 𝛿2。由于 Δmix𝐻 ≥ 0, Δmix𝐻 = 0时 Δmix𝐺 取最小的负值。在溶胀平衡时，

Δ𝐺 = Δmix𝐺 + Δel𝐺 = 0

其中 Δel𝐺 是溶胀前、后的弹性自由能变，与溶胀的体积变化有关。当 Δmix𝐺 取最小的负值是，溶胀平衡下
Δel𝐺 就越大，即学溶胀度越大。如果我们尽可能广泛地选择不同 𝛿1 值的溶剂去溶胀同一种聚合物的交联网
络，那么溶胀度最大的溶剂，Δmix𝐻 就最接近于零，即溶剂的 𝛿1最接近高分子的溶度参数 𝛿2。
对于没有交联试样的情况（即溶液），可测量稀溶液的特性粘度 [𝜂]。它与高分子链在溶液中的单链溶胀

程度有关，因此也可类似地估算聚合物的溶度参数。

除了实验测量之外，还可以用基于不同理论给出的“基团贡献法”，从分子结构估算溶度参数。例如书上

由摩尔引力常数 𝐹 来估算的方法。
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第六讲 相互作用参数的物理化学基础 6.2 相互作用参数的唯象理论

6.1.4 溶度参数的扩散理论

以上讨论都仅限于非极性分子混合物。这意味着这些结论不适用于（聚）电解质溶液，因为电解质间的静

电作用势是长程的。为了突破这一极限，C. Hansen提出了考虑色散力、诱导力和氢键三种因素的三维溶度参

数理论，

𝛿2 = 𝛿2d + 𝛿2p + 𝛿2h
下标 d、p、h分别表示色散力（dispersion force）、诱导力（分子极性，polarity）和氢键（hydrogen bonding）三种

因素的贡献。在实际应用中这些溶度参数的值主要通过查表获得。

至此，我们一直默认溶质或溶剂纯物质在同温同压下是液态。如果溶质纯物质在同温同压下是晶态固体，

那么混合焓变 Δmix𝐻 还将包括纯物质固液相变的潜势，这对溶解的混合自由能变 Δmix𝐺 贡献很大的正值（不
利于溶解），除非相互作用参数的溶度参数因素中有极性、氢键等特殊作用抵消掉相变潜热，使 Δmix𝐻 < 0。可
想而知，非极性晶态聚合物的溶解度在非极性溶剂中会非常低。

6.1.5 溶度参数理论的局限与修正

既然 𝜒12 能通过实验独立测量，溶度参数也可以查表或者独立测量，那么我们就可以验证这样一件事：在
一个聚合物溶液的 θ条件下，𝜒12 理应等于 0.5。我们可以从溶度参数估算 𝜒12,看它是否真的等于 0.5。然而，

结果并不乐观。例如前面提到的聚苯乙烯的环己烷溶液，已知它在 34.5 °C时处于 θ条件。查表可得，聚苯乙烯
的溶度参数 𝛿2 = 18.6MPa1/2，环己烷的溶度参数 𝛿1 = 16.8MPa1/2。环己烷的摩尔体积 𝑉 ∗

m,1 = 108.9 cm3/mol。

代入式(6.1)得 𝜒12 = 0.15这跟理应值 0.5相差甚远。这并不是个例。经过大量聚合物、溶剂的实验测量结果，人
们发现采用下面的经验式适用性更好：

𝜒12 = 0.34 + 𝑉 ∗
m,1
𝑅𝑇 (𝛿1 − 𝛿2)2

但是，如此形式的 𝜒12 多了一项不依赖温度的常数，这样的话，表达式 𝑅𝑇𝜒12𝑛1𝜑2 就不再是单纯的混合焓变了，
而是多出了一项混合熵变贡献 0.34𝑅𝑇𝑛1𝜑2。

另一方面，实验测定的 𝜒12往往还依赖溶液浓度（书上的图 3-2），这也是讨论至此的理论所不能解释的。

总结起来，现在的相互作用参数有以下三个与实验不符的地方：

1. 理论假定上就限定非极性溶剂和溶质的情况（暂不论 Hansen溶度参数理论），因此不适用强极性、氢键

因素乃至（聚）电解质溶液。例如：聚乙二醇溶于水，但它们的溶度参数相差甚远；

2. 就算用于非极性溶剂与溶质，也还需加一个具体意义不明的 0.34；就算是这样，普适性也不强；

3. 解释不了有 LCST行为的相图；

4. 解释不了 𝜒12依赖溶液浓度的现象。

6.2 相互作用参数的唯象理论

前面几讲基于格子模型得到的理论，都使用了一系列假设，例如平均场假设、只考虑最相邻相互作用的假

设等等。其中，高分子溶液的混合熵变的 Flory–Huggins表达式（式(3.2)）不仅假定了配位数 𝑧 → ∞，还假定了
链段和溶剂的排布完全随机。刚刚我们又对混合焓变的表达式（式(3.3)）进行了讨论，主要集中在相互作用参

数 𝜒12的物理化学意义上。尽管在坚持一定的物理化学基础上，我们对 𝜒12进行了扩展，但仍然无法解释实验
现象。更加严格的理论推导，往往会使得表达式变得更加复杂，失去简洁性和实用性。因此，其中一种现在通

行的做法是唯象地处理真实溶液的混合吉布斯自由能。惯例上，大家会把 Δmix𝐺 分成以下的贡献：

Δmix𝐺 = Δmix𝑆FH + Δmix𝐺ex (6.2)

Δmix𝐺ex = 𝑅𝑇𝜒12𝑛1𝜑2 (6.3)

更新至 2025-09-21 35



6.2 相互作用参数的唯象理论 第六讲 相互作用参数的物理化学基础

其中 Δmix𝑆FH是 Flory–Huggins理论给出的混合熵变（式(3.2)），Δmix𝐺ex表示实际溶液混合吉布斯自由能超出
Flory–Huggins的混合熵以外的贡献。这部分贡献自然包括混合焓变和超出 Flory–Huggins混合熵的混合熵

变。这里的 𝜒12完全由上面的表达式重新定义，因此它只是根据习惯，把 Δmix𝐺ex转化成另一个状态函数来讨
论，并没有多余的信息，也失去了原本的相互作用参数的物理化学意义。在我们讨论的问题中，确定混合物状

态的变量是 (𝑇 , 𝑝, 𝑛1, 𝑛2)，因此唯象的 𝜒12 = 𝜒12 (𝑇 , 𝑝, 𝑛1, 𝑛2)。通常我们只关心温度和组成变化的影响。
经验上，𝜒12的温度依赖性常写成以下形式：

𝜒12 = 1
2 + 𝜓 (1 − 𝜃

𝑇 ) = 1
2 + 𝜓 − 𝜓𝜃

𝑇 (6.4)

其中 𝜓 和 𝜃 是经验参数。它们的符号可正可负。溶剂与溶质中如果形成强极性相互作用或者氢键将有可能使
𝜒12 < 0。注意到，当 𝑇 = 𝜃 时 𝜒12 = 1/2，即溶液处于 θ条件，因此这里的 𝜃 又常称为 θ温度，因此必须有 𝜃 > 0。
把这个形式代入混合吉布斯自由能表达式中探讨它预测的相图可以发现，当 𝜓 < 0时，所预测的相图有 LCST

行为。

若想再考虑 𝜒12的浓度依赖性，可在上式基础上进行修正。书上的式 (3-22)给出了一种形式。研究者们提

出过很多其他不同的形式，感兴趣的读者可以查阅文献。

我们当然仍然可以继续努力为真实溶液的行为找到严格的微观机理，建立更好的理论。这样的研究报道

和成果是很丰富的，但是它们经常把所得到的结果整理成唯象 𝜒12 的形式。这时我们当然不会说这种理论是
唯象的。

最后，尽管 𝜒12 的物理意义被推广了，或者唯象化了，但是按照式(6.2)和(6.3)的形式渗透压的位力展开可

以发现，𝐴2 ∝ 1/2 − 𝜒12 仍成立、因此 θ条件的定义仍然不变，良或不良溶剂的判定方法也不变。因此这些概
念是普适于所有真实高分子溶液的。
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第七讲 高分子链在稀溶液中的尺寸——体积排除效应

7.1 高分子链在溶液中的排斥体积效应

Flory–Huggins模型关于混合熵的处理还有一个问题。在其理论考虑当中，

• 每条链的第一个链段可以在所有剩余空格中任选一个位置放置；

• 第 𝑗 个链段周围的 𝑧 − 2个格子的空缺概率就按溶液的总浓度来考虑。
但是实际上，在已有一个高分子链占据的范围内的剩余空格中，能够容许我们连续地再放入一条链的方法

数极少（或概率极低，图7.1a就是一例）。凡是将来放不下整条链的起始空格，都不能选。可见，聚合物的第

一个链段，并非是在所有剩余空格中任选一个位置放置。在已放置的高分子链范围内部的那些空格，多半是

不能选的——除非要求每条链的构象都伸展开，留出更多的空位，但这又使系统的熵减小了。因此，原始的

Flory–Huggins格子理论高估了混合熵 Δmix𝑆。

(a) 在原有链的范围内，哪些空格无法

作为放置另一条聚合度相同的新链的首

格？

𝑟𝑟

(b)由于链段间的排斥体积效应，图中两

个高分子链的重叠区域，不改变构象使

双方都更加伸展的话是无法实现的。因

此实现两链质心距离 𝑟 的代价是熵的损
失。

图 7.1: 高分子链的排除体积效应示意图。

以上效应也可以解读为：在溶液中，两个高分子链之间有不可重叠性，又称为高分子链间的排斥体积效应

（excluded volume effect）。这种排除体积效应是大量链段热运动显示出来的熵变效应：按照自由单链构象概率

分布，两链的质心本无法接近到的距离 𝑟。如图7.1b所示，由于链段间的排斥体积效应，图中两个高分子链的重

叠区域，不改变构象使双方都更加伸展的话是无法实现的；需要两链的构象偏离自由状态的概率分布，而增加

较为伸展的那些构象的比重，才能实现。正是这种偏离造成了熵损失。随着所要求的 𝑟 越来越小，这种偏离就
越大，熵损失也就越大。如果只考虑两个链的系统，那么该系统的自由能随两链的中心距离 𝑟 的变化，将带有
这种熵损失贡献。若无外界控制，两链将自发地远离对方，增大 𝑟。所以这是一种热力学等效的排斥作用。
高分子整链之间的排斥体积效应，本质上是来自高分子链段的排斥体积效应，但又不仅仅是链段的排斥

体积效应。固然，如果高分子不同链段可重叠地占据同一位置，那整链之间就没有排斥体积效应了。这种链段

间的排斥体积效应，是格子模型天然已经考虑的。而整链的排斥体积效应是在此基础上再考虑高分子链的连
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接性的结果；如果放不下整条链我们也可以只放半截链，那 Flory–Huggins模型的考虑就并无不妥。

7.2 高分子链的尺寸–质量标度关系

一个单独的高分子链，按其自由的构象分布，在其占据的空间范围内会留出多少空格？显然不会一个空

格都不留，因为高分子链的构象在热力学平衡态下一般是类似自由行走轨迹的，会留出很多未被占据的空格。

到底会留出多少连续的空格，或说塞下第二条链仍需要发生的构象改变或熵损失有多大，与高分子的分子量

和链构象统计性质有关。之前我们已经介绍过高分子链构象统计的知识。在这里我们从标度关系的角度回答

这个问题。

7.2.1 标度关系

首先介绍“标度关系”是什么意思。我们在描述物体的尺寸时，常常与物体的质量相联系。一个实心的三

维物体，不论物体的形状、大小和物理化学特异性，它的半径 𝑅与其质量 𝑀 之间总有以下正比关系

𝑀 (𝑅) ∝ 𝑅3, 𝑅 (𝑀) ∝ 𝑀1/3

若视质量为半径的函数，𝑀 = 𝑀 (𝑅)，则大致上有

𝑀 = 𝜌𝑉 = 𝜌𝐾𝑅3 ∝ 𝑅3

其中 𝜌是物体的质量密度，𝑉 是物体的体积，𝐾 是与物体形状有关的常数，例如对于球体 𝐾 = 4𝜋/3。物体的物
质组成（密度）和形状（𝐾）都是不依赖半径 𝑅的，它们的差异不影响 𝑀 ∝ 𝑅3关系的普适性。
同时我们还发现，在上述物理意义下的函数 𝑀 (𝑅)有齐次性：

𝑀 (𝜆𝑅) ∝ 𝜆3𝑀 (𝑅) ∝= (𝜆𝑅)3

可见，𝑀 ∝ 𝑅3这个关系也不依赖物体的尺寸 𝑅。这个关系至少在一个比较广的尺寸范围内保持对每个尺度都
成立。𝑀 与 𝑅的这种关系就是一种标度关系（scaling relation），意思是不依赖于尺度（scale）缩放的普适关系。

我们也常说这个关系具有尺度不变性（scale invariance）。

7.2.2 理想链与自回避链

现在我们来看一下高分子链的尺寸与其分子量之间的标度关系。由于分子量正比于聚合度（链段数）𝑛，
而高分子的尺寸可通过均方回转半径 𝑅g来表征，因此我们考察 ⟨ℎ2⟩1/2与 𝑛之间的标度关系。对于理想链（高
斯链），我们已经知道，

𝑅g (𝑛) = √
𝑛𝑙2
6 ∝ 𝑛1/2, 理想链

其中 𝑙 是链段长度。而且易验函数 𝑅g (𝑛)有齐次性：

𝑅g (𝜆𝑛) = 𝜆1/2𝑛1/2 = (𝜆𝑛)1/2

所以理想链不仅整链上满足 𝑅g ∝ 𝑛1/2，而且在以几何中心为球心的任意 0 < 𝑅 < 𝑅g 区域内也仍满足 𝑅 ∝
√𝑛 (𝑅)，其中 𝑛 (𝑅)是半径 𝑅内所含的链段数。
对于自由连接链，我们知道它在 𝑛 → ∞时才趋于理想链，对自由连接链而言上式并非对所有 0 < 𝑅 < 𝑅g

都成立，因而严格来说不是标度关系。我们至多可以说自由链接链在 𝑛很大时近似具有这种标度关系。
在理想链的链构象统计方法中，我们忽略了链段间的排斥体积效应；也就是说理想链默认了链段可以重

叠互穿。实际上同一条链的不同链段在同一时刻不可能占据同一位置，因此线形高分子链的构象应该是一种
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自回避行走（self-avoiding walk，SAW）轨迹。自回避行走链的尺寸与分子量之间的标度关系是一个难解的数学

问题。通过数值模拟和精确计算可猜测 3维空间中自回避链的标度关系是

𝑅g (𝑛) ∝ 𝑛0.588⋯, 自回避链

7.2.3 分形维数

我们通过理想链为例可以发现，3维空间中的高分子链的尺寸与其分子量之间的标度关系不是𝑅 ∝ 𝑀1/3，
而是 𝑅 ∝ 𝑀1/2。这说明自由的高分子链是“镂空”的。而且，由于这个关系是具有齐次性的，一个均方回转半
径为 𝑅g的理想链，以其几何中心为球心，半径缩至 𝜆𝑅g的球形区域局部也满足 𝑅g (𝜆𝑛) ∝ (𝜆𝑛)1/2 , ∀𝜆 > 0,所以
我们又常形容高分子链的链段的空间概率分布具有“自相似性”。这样的几何物体叫分形（fractal）。通过分形

物体的尺寸–质量标度关系，我们定义一个物体的分形维数（fractal dimension）𝑑f为

𝑀 ∝ 𝑅𝑑f , 𝑅 ∝ 𝑀1/𝑑f

一般地，𝑑 维欧几里得空间中的物体的分形维数 0 < 𝑑f ≤ 𝑑；当 𝑑f = 𝑑 时，物体是实心的。不是所有镂空的物体
都是分形。分形物体的一个重要特征是其尺寸–质量关系具有齐次性，既是标度关系，而非某特定物体在特定

尺寸下恰好满足的关系。

7.3 高分子链在稀溶液中的尺寸

7.3.1 标度关系

书上的第二章和上一节所讨论的链构象统计，可视为高分子链在真空中的构象。我们讨论的均方末端距

或均方回转半径时的“平均”是对所有可能的构象的平均。当高分子链溶解在溶剂中，在热力学平衡态下高

分子链的平均尺寸，是一个状态函数，取决于温度、溶剂性质和高分子链的分子量等因素。考虑定温定压下，

一个给定链段数 𝑛的线形聚合物链溶解于大量溶剂，若视该链范围内的溶剂分子与链段为系统，我们可以写
下单链的混合吉布斯自由能：

Δmix𝐺 = Δmix𝐺 (ℎ, 𝑛)
其中，由于温度和压强都是恒定的，我们只考虑组成——即链段数 𝑛 和系统的“体积”（以末端距 ℎ来表征）。
注意，在这个特殊的系统中，压强和“体积”相互独立的。而且给定聚合度的链，其尺寸 ℎ仍可独立变化。在稳
定的平衡态下，高分子链所取的 ℎ应使其满足平衡态稳定性判据，即

𝜕Δmix𝐺
𝜕ℎ = 0, 𝜕2Δmix𝐺

𝜕ℎ2 > 0

以上偏导数均为固体 𝑇、𝑝、𝑛下作的，为简洁不再标明。下面我们分开讨论混合焓和混合熵。混合焓的考虑可
按照格子理论的办法（自回避链）。在这里我们把要把链段当作小分子考虑，并把体系的体积表示为 ℎ3，此时
链段的体积分数就是 𝑛/ℎ3，按照式(3.3)，单链混合焓是

Δmix𝐻 = 𝑘B𝑇𝜒12𝑛2/ℎ3

至于单链混合熵，既然已选择 (ℎ, 𝑛)为状态变量，那么终态的熵可用聚合度为 𝑛的单链取末端距为 ℎ的概率密
度函数 𝑊 (ℎ, 𝑛)来计算。在这里我们利用书上的式 (2-44)，这相当于又假定了链段间可重叠。虽然这与格子模

型矛盾，但自回避链没有解析式可用，只好如此。延用这种理想链假定，初态应是“链段的纯物质”，即所有链

段紧密堆满空间，未有溶剂进入的状态。由于链段可重叠，初态 ℎ = 0。按照书第 71页的推导，

𝑆 (ℎ, 𝑛) = −3
2𝑘B

ℎ2
𝑛𝑙2 + 𝑆 (0, 𝑛)
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由此我们得到了单链混合熵

Δmix𝑆 = −3
2𝑘B

ℎ2
𝑛𝑙2

代入 Δmix𝐺 后，我们就可以求在稳定的平衡态下单链末端距 ℎ的关于聚合物 𝑛的表达式：

Δmix𝐺 = Δmix𝐻 − 𝑇Δmix𝑆

= 𝑘B𝑇 (𝜒12 𝑛
2
ℎ3 + 3ℎ2

2𝑛𝑙2 )

𝜕
𝜕ℎΔmix𝐺 = 0 ⇔ ℎ5 = 𝜒12𝑙2𝑛3

𝑘B𝑇
⇔ ℎ ∝ 𝑛3/5

而且易验上列得到的 ℎ的表达式总满足 𝜕2Δmix𝐺/𝜕ℎ2 > 0。我们注意到，这个讨论得到的 𝜈 = 3/5，与 0.588⋯
比较接近。尽管这个推导过程混合了理想链假设和自回避链假设，但它传达的物理思想是值得肯定的，那就

是视单链在溶液中的尺寸为一个“溶胀平衡”的结果：高分子链吸收更多的溶剂（体积扩张）的代价是构象熵

的损失。

7.3.2 扩张因子

除了 𝜈 外，我们还定义扩张因子（expansion factor）𝛼 来表征高分子链平均构象偏离理想链的程度：

𝛼2 def= ⟨ℎ2⟩
⟨ℎ2⟩0

其中 ⟨⋅⟩0是理想链的结果。刚刚得到的 𝜈 = 3/5的结果告诉我们，自回避链的扩张比满足以下关系：

𝛼 ∝ 𝑛3/5
𝑛1/2 ∝ 𝑛1/10

Flory和 Krigbaum经过更仔细的推算得出

𝛼5 − 𝛼3 = 2𝐶M (12 − 𝜒12) √𝑀 (7.1)

𝐶M = ( 27
√32𝜋3

) ( 𝑉 ∗2
m,2

𝑀2𝑁A𝑉 ∗
m,1

) (⟨ℎ
2⟩0
𝑀 )

−3/2

其中 𝐶M是不依赖 𝑛，ℎ的常数。这个推算过程同时给出了式(6.4)。注意到式(7.1)含有 1
2 − 𝜒12，联系第二位力系

数 𝐴2 ∝ 1
2 − 𝜒12，我们可以建立扩张系数与溶剂的良劣的联系：在 θ条件下，𝜒12 = 1/2，𝐴2 = 0,由 𝛼5 = 𝛼3 以

及 𝛼 > 0可以看出 𝛼 = 1,即高分子链采取理想链的构象。在溶液的上下文我们又称这是无扰链（unperturbed

chain）。在良溶剂中，𝜒12 < 1/2，𝐴2 > 0，由类似的方法可以看出 𝛼 > 1，分子链与理想链相比取更加扩张的构
象。这样的极限情况是 𝛼5 ≫ 𝛼3，此时忽略 𝛼3,有

𝛼5 ∝ 𝑀1/2 ∝ 𝑛1/2

而由扩张因子的定义 𝛼 ∝ 𝑛𝜈−1/2，联立后

𝑛5(𝜈−1/2) ∝ 𝑛1/2 ⇔ 𝜈 = 3
5

实际上，扩张比依赖 𝑛和 𝜒12（或温度 𝑇），对给定聚合度的高分子链和溶剂，在 𝑇 > 𝜃 时，𝑇 越大 𝛼 越大；给定
𝑇 > 𝜃 的温度 𝑇 下，聚合度 𝑛越大 𝛼 越大。实际体系常常达不到 𝛼5 ≫ 𝛼3 的极限情况，故高分子链在溶液中的
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(a)聚苯乙烯在不同溶剂的稀溶液中的 𝑧 均均方根回转半径a⟨𝑆2⟩1/2𝑧 对重均分子量 𝑀w 作

图。这两个量都是通过光散射法测得的。○：在苯中 25 °C和在环己烷中 34.5 °C[10]；◒：在
苯中 30 °C和在环己烷中 34.5 °C[11]；◑：在苯中 30 °C[12]；⊝：在反式十氢萘中 20.4 °C[12]；⦶：
在环己烷中 34.8 °C[13]。

a“𝑧均”来自德语“Zentrifuge”（离心，英语是 centrifuge）。𝑧均分子量是由分析超离心
法测量得到的平均分子量。通常 𝑧 均分子量被定义为 𝑀𝑧 = ∑𝑖 𝑛𝑖𝑀3𝑖 / (∑𝑖 𝑛𝑖𝑀2𝑖 )。后世直
接把 𝑧 均定义为该式。超离心法得到的平均分子量恰如该式需要若干严格的前提条件，
造成实验方法和目的矛盾，包括试样的分散性不要过宽、离心场梯度很小等。𝑧 均均方回
转半径是通过光散射法测得的。类似地，光散射法得到的回转半径 𝑧 均的结论需要的前
提条件都不带来实验方法和目的矛盾，它们包括要求瑞利散射、试样是线形聚合物等。

(b)不同聚合物/良溶剂系统在 25 °C下的扩张因子 𝛼2
s 对重

均分子量 𝑀w 的依赖关系。○：聚 D-𝛽-羟基丁酸酯（PHB）

在三氟乙醇中[14-15]；●：聚 𝛽-甲基-𝛽-丙内酯（PMPL）在三

氟乙醇中[14-15]；⊕：聚异丁烯（PIB）在环己烷中[16]；⊚：聚
𝛼-甲基苯乙烯（P𝛼MS）在甲苯中[17]。

图 7.2: 高分子链在稀溶液中的排除体积效应实验结果（图自Miyaki et al.[10]）。

𝜈 值会在 1/2 ∼ 3/5之间。书上式 (3-48)需要在条件 𝑇 ≫ 𝜃 时成立。3/5这个值的估算过程考虑了 𝜒12 可能依
赖温度的机理（式(6.4)），已经比较普适。唯独没有纳入浓度 𝜑2的依赖性。
图7.2给出了上述理论预测理实验结果的比较。图7.2a是聚苯乙烯在不同溶剂的稀溶液中的 𝑧均均方根回

转半径对重均分子量的双对数图。在苯（良溶剂）中的数据落在斜率为 1.19(1)的直线上，说明 𝜈 = 0.595(5)；
在环己烷 34.5 °C（θ条件）中的数据落在斜率为 1的直线上，说明 𝜈 = 1/2。这个结果很好地验证了上述理论。
图7.2b是不同聚合物/良溶剂系统在 25 °C下的扩张因子 𝛼2s 对重均分子量 𝑀w 的依赖关系。可以看到，它们都

大致落在某条直线上，这证明了自回避链扩张比关系 𝛼 ∝ 𝑛1/10（来自 𝜈 = 3/5）的在聚合物/良溶剂系统中的普

遍适用性。

7.3.3 临界交叠浓度

在作为分形的高分子链构象中，链段的分布是不均匀的。这可以直接从标度关系得出。假定我们讨论的

空间是 3维空间，由 𝑛 ∝ 𝑅𝑑f 对 𝑅求导可得 d𝑛 ∝ 𝑅𝑑f−1d𝑅，这是在 𝑅 ∼ 𝑅 + d𝑅的球形壳层内的链段数。该壳层
的体积 d𝑉 = 4𝜋𝑅2d𝑅，所以链段密度 𝜌 (𝑅) ∝ d𝑛/d𝑉 ∝ 𝑅𝑑f−3。由于 𝑑f < 3，因此这是一个双曲线类型的函数，随
𝑅增大而急剧减小。所以，无论是理想链还是真实链，作为 𝑑f < 3的分形物体，它的链段密度从中心到边缘从
密到疏地变化，边缘部分的链段是非常稀疏的。两个这样的线团互相接近时（参照图7.1b），就算考虑链段的不

可重叠性，也可以允许部分重叠。但是若想进一步靠近，双方的链段密度就会迅速变得很高，通过改变各自的

构象来避免链段重叠所造成熵损失也就迅速增加，由此造成整链之间的排斥体积效应。

但是，当我们在有限的溶剂中加入足够多的高分子链，以致它们不得不互相接近时，这种链段重叠和构象

调整是必然发生的（只要热力学上不造成相变）。这时高分子链之间发生互穿。于是就存在一个临界交叠浓度
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（critical overlap concentration），常记为 𝐶∗。当聚合物溶液浓度 𝐶 > 𝐶∗ 时，溶液中开始有大量的链段重叠和构
象调整（见书上图 3-8）。通过 𝐶∗ 我们更明确地界定稀（dilute）溶液是 𝐶 < 𝐶∗，亚浓（semidilute）溶液的范围是

𝐶 > 𝐶∗。我们可以几何估算这个浓度。假定聚合物在稀溶液（𝐶 ≪ 𝐶∗）中的均方回转半径是 𝑅g，则它所占据的
空间体积约为 (4π/3) 𝑅3g。再设聚合物的分子量是 𝑀，则临界交叠浓度（作为质量浓度）就应该满足

𝐶∗ = 𝑀
𝑁A (4π/3) 𝑅3g

(7.2)

利用高分子链的尺寸–质量标度关系 𝑅g ∝ 𝑀 𝜈，上式就给出

𝐶∗ ∝ 𝑀
𝑀3𝜈 = 𝑀1−3𝜈

书中式 (3-41)给出的是 𝜈 = 3/5的结果。
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8.1 剪切粘度

理想的剪切流动是指两块平行平板相对运动时，其间液体发生具有以下特征的流动：

1. 液体在与平板接触处的速度与相应平板速度相同（无滑移边界条件）；

2. 液体速度仅在平板相对运动方向上有非零分量（层流条件）；

3. 液体速度沿垂直于平板方向呈线性分布（均匀剪切条件）。

此时，设下板固定，上板以速度 𝑣 = Δ𝑥/Δ𝑡 匀速运动（如图8.1所示），则上板单位面积所受的、与该板运动方向

相同的力的分量叫做液体所受到的剪切应力（shear stress），记作 𝜎，SI单位：Pa，用图8.1的符号表示就是

𝜎 = 𝐹
𝐴

液体所受到的剪切应变率（shear strain rate），记作 ̇𝛾，定义为单位时间内液体层的相对位移与其厚度之比，即

̇𝛾 = 𝑣
ℎ = Δ𝑥

ℎΔ𝑡
SI单位是 s−1。如果保持恒定 ̇𝛾 的剪切形变已经施加足够长的时间，则所需的剪切应力将趋于恒定，我们称之
为稳态（steady-state）应力。稳态应力是应变率的函数 𝜎 = 𝜎 ( ̇𝛾 )，且一定是非减函数。我们定义液体的表观稳
态剪切粘度（apparent steady-state shear viscosity）为

𝜂a def= 𝜎 ( ̇𝛾 )
̇𝛾 = 𝜂a ( ̇𝛾 )

SI单位是 Pa ⋅ s。在本讲义中我们总是讨论剪切形变以及稳态的情况，后文将省略这些词。

图 8.1: 理想剪切流动示意图

我们把表观粘度不依赖应变率的流体称作牛顿流体（Newtonian fluid），这是一种理想概念。经验表明，大

部分在常温常压下为液态的小分子体系在常见实验应变率范围内都是牛顿流体。

对于一般的真实流体，我们可讨论应变率极小时的粘度：

𝜂0 def= liṁ𝛾→0
𝜎 ( ̇𝛾 )

̇𝛾
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我们在理论上假定该极限总存在。这个粘度称为零切粘度（zero-shear viscosity）。以下讨论的“粘度”，要么是

牛顿流体的粘度，要么是一般流体的零切粘度，所以不涉及粘度对应变率的依赖性问题。

8.2 粒子悬浮液的粘度

考虑一个硬球粒子悬浮液，其溶剂的粘度是 𝜂s。假定所有粒子大小一致，半径为 𝑎，在悬浮液中的体积分
数为 𝜑，则悬浮液粘度 𝜂将比溶剂粘度大，粒子越浓（𝜑 越大），𝜂越大。不同组成、尺寸的硬球悬浮液的粘度都
遵守大致统一的函数形式（见书 §1.4.5）：

𝜂r = 𝜂r (𝜑)
其中

𝜂r def= 𝜂 (𝜑)
𝜂s

叫相对粘度（relative viscosity）。对 𝜂r在 𝜑 = 0附近展开，并注意到 𝜂r (0) ≡ 1,可以写出如下形式：

𝜂r = 1 + 𝐴𝜑 + 𝐵𝜑2 + ⋯

若定义增比粘度（specific viscosity），

𝜂sp def= 𝜂r − 1
则有

𝜂sp = 𝐴𝜑 + 𝐵𝜑2 + ⋯
如果用质量浓度 𝐶 代体积分数 𝜑来表示上列关系，记 𝜂r = 𝜂r (𝐶)，则又可定义特性粘度（intrinsic viscosity）

[𝜂] def= lim𝐶→0
𝜂sp
𝐶

此亦即书上的式 (3-64)。特性粘数的 SI单位是 m3/kg，常用单位是 100ml/g或 dL/g。此时我们有

𝜂sp = 𝜂r − 1 = [𝜂] 𝐶 + ⋯

Huggins把上式写到二次项，

𝜂sp = 𝜂r − 1 = [𝜂] 𝐶 + 𝑘H [𝜂]2 𝐶2 + ⋯ (8.1)

所引入的系数 𝑘H称 Huggins常数。

A. Einstein在 1905年通过流体动力学理论推导出，对于硬球粒子，上列式子中的一次项系数 𝐴 = 0.5。后
来，多位流体力学家又给出了二次项系数 𝐵 = 5.9 ∼ 6.2。故今天我们知道

𝜂r = 𝜂sp − 1 = 1 + 2.5𝜑 + ⋯ (8.2)

8.3 高分子稀溶液的粘度

在上一讲我们知道，高分子链在稀溶液中也有一定的排斥体积。我们看能否把高分子链看成某种等效尺

寸的硬球粒子，通过式(8.2)写出高分子稀溶液的粘度式。为此我们需要问：如果硬套式(8.2),那么稀溶液中的一

个高分子链相当于一个多大的硬球呢？假设这个等效硬球的体积为 𝑉h，称为流体动力学体积（hydrodynamic

volume），那么我们就能写出以下基本关系：

𝜑 = 𝑁2
𝑉 𝑉h

其中 𝑉 是溶液的体积，𝑁2是溶液中高分子的个数。若考虑高分子溶液的质量浓度 𝐶，则又有以下基本关系：

𝐶 = 𝑁2𝑀
𝑁A𝑉
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其中 𝑀 是高分子链的分子量。我们可以假定 𝑉h与高分子的均方根末端距 ⟨ℎ2⟩1/2成相应的关系：

𝑉h = 𝑘 ⟨ℎ2⟩3/2

其中 𝑘 是待定的比例系数，此时聚合物的特性粘数就可以通过之前的式子表示成：

[𝜂] = 2.5𝑘𝑁A ⟨ℎ2⟩3/2
𝑀 = Φ⟨ℎ2⟩3/2

𝑀
此即 Flory–Fox粘度公式，亦即书上的式 (3-65)，其中系数 Φ ≡ 2.5𝑘𝑁A 也是待定的。由于特性粘度可以实验测

量，因此 Φ或 𝑘 可以实验测量。文献通常报道的是 Φ。书上的 §3.12节介绍了 Kirkwood–Riseman按照理想链

的统计力学和高分子链在溶剂流场中部分穿流的假定推导 Φ0 = 2.84 × 1023mol−1。真实高分子链溶液体系所
测得的 Φ值在 2 × 1023mol−1至 2.6 × 1023mol−1之间（见图8.2）。

图 8.2: 不同聚合物/溶剂体系的 Φ值实验测量结果列表。截自 Flory的著作[18]第 616页。图中的参考文献见原文。表中还附了实

验采用的高分子级分数和分子量范围。表中 Φ的单位是 dL/(mol ⋅ cm3)。

理想链的结果对应于高分子溶液在 θ条件下的情况。此时均方末端距与分子量有明确的关系，因此我们
可以得到

[𝜂]θ ∝ 𝑀1/2

在一般的条件下，高分子溶液（非聚电解质）常显示Mark–Houwink公式的关系：

[𝜂] = 𝐾𝑀𝑎

其中 𝑎取值一般在 0.5 ∼ 0.8之间。0.5是 θ条件的极限值，而 0.8则是良溶剂极限值，该值可以通过扩张因子 𝛼
得到解释。上一讲已经说过，在 𝑇 ≫ 𝜃 条件下，𝛼 ∝ 𝑀1/10，代入 𝛼 的定义，可得

[𝜂] ∝ 𝛼3𝑀1/2 ∝ 𝑀4/5

针对许多聚合物–溶剂–温度三元条件的 Mark–Houwink参数 𝐾 和 𝑎，有大量的经验数据可供查阅（例如
书中的表 1-5）。这些经验数据是通过已知分子量的窄分子高分子样品的粘度测量得到的。采用粘度法测量某

聚合物的分子量时，需要在已知 Mark–Houwink参数的相同溶剂和温度条件下进行。如果待测试样是多分散

更新至 2025-09-21 45



8.4 尺寸排除色谱 第八讲 高分子链在稀溶液中的尺寸——流体动力学尺寸

的，套用 Mark–Houwink公式得到的分子量是粘度平均分子量（viscosity-average molecular weight），记作 𝑀v，

即

𝑀v
def= [𝜂]1/𝑎

𝐾1/𝑎
而实际上，这时的溶液粘度应该表示成：

𝜂r = 1 +∑
𝑖
𝐶𝑖 [𝜂]𝑖 + ⋯

其中 𝑖表示不同分子量的组份，𝐶𝑖是各组份的质量浓度，[𝜂]𝑖 = 𝐾𝑀𝑎𝑖 。这时特性粘度是

[𝜂] = lim𝐶→0 (
𝜂 − 𝜂s
𝐶𝜂s

) = lim𝐶→0 (
∑𝑖 𝐶𝑖 [𝜂]𝑖
∑𝑖 𝐶𝑖

)

= ∑𝑖 (𝑛𝑖𝑀𝑖/𝑉 ) 𝐾𝑀𝑎𝑖
∑𝑖 𝑛𝑖𝑀𝑖/𝑉

= 𝐾 ∑𝑖 𝑛𝑖𝑀𝑎+2𝑖
∑𝑖 𝑛𝑖𝑀𝑖

因此粘均分子量可表示成关于各分子量组份的以下形式：

𝑀v = (∑𝑖 𝑛𝑖𝑀1+𝑎𝑖
∑𝑖 𝑛𝑖𝑀𝑖

)
1/𝑎

可见，尽管聚合物的分子量（分布）不依赖溶剂和温度变化，但给定聚合物试样的粘均分子量却依赖于所用溶

剂和温度，因为 Mark–Houwink参数 𝐾 和 𝑎依赖于溶剂和温度。另一方面，注意到当 𝑎 = 1时，粘均分子量就
是重均分子量 𝑀w。不同平均分子量之间的大小关系均可由柯西–施瓦茨不等式证明得到[19]。粘均分子量满

足 𝑀n ≤ 𝑀v ≤ 𝑀w。

8.4 尺寸排除色谱

色谱（chromatography）是一种基于物质在固定相与流动相间分配差异分离混合物的分析技术。“色谱”得

名可追溯至二十世纪初俄国-意大利植物学家米哈伊尔·茨维特（Mikhail Tsvet，1872–1919）首次用碳酸钙柱

分离植物色素时观察到的彩色谱带现象；也是他首先使用“chromatography”一词。在中学生物实验“叶绿素

的提取与分离”中，滴在滤纸上的色素提取液在层析液（流动相）的推动下迁移，因不同色素在层析液中的

溶解度不同，迁移速率产生差异，最终在滤纸上形成分离的条带：从上到下依次为橙黄色的胡萝卜素、黄色

的叶黄素、蓝绿色的叶绿素 a和黄绿色的叶绿素 b（图8.3）。这正是一个典型的色谱分离实验。然而，色谱方

法分离混合物成分的底层原理并非颜色辨认，只能概括为本自然段的第一句话。以叶绿素提取与分离实验为

例，滤纸是固定相（stationary phase），层析液与植物汁液混合物是流动相（mobile phase），这个实验属于薄层

色谱（thin-layer chromatography, TLC）。与薄层色谱并列的方法是柱色谱（column chromatography），是将固定

相填充于柱状装置中，利用混合物各组分在固定相与流动相间的分配或吸附差异实现分离，尤其适用于较大

规模样品的纯化制备。在一般色谱方法中，流动相既然能流动，它只能是气态或液态，分别称为气相色谱（gas

chromatography，GC）和液相色谱（liquid chromatography，LC）。固定相的材料是特别定制的，使得待分离物质

与固定相材料之间的亲和性有差异，这样在层析液的冲刷下，不同组份在固定相的迁移速度不同，达到分离的

效果。固定相与流动相待分离成分间的亲物性差异可以是基于吸附、分配、离子交换、分子尺寸排除等不同的

具体原理，这又衍生出不同的色谱技术。无论是什么色谱方法，组分被分离的事实必须能被观测到。在叶绿

素实验中不同成份的分离可用肉眼辨认颜色。现代色谱常通过检测器（detector）来观测各成份的位置和浓度。

检测器输出的色谱图（chromatogram）是组份浓度对时间或流动相体积的函数曲线，色谱图上每个峰对应一种

组份，峰面积与该组份的浓度成正比。本节介绍的尺寸排除色谱（size-exclusion chromatography, SEC）∗，是一种

基于分子尺寸排除原理的液相柱色谱方法，常用于高分子溶液的分子量分布测定。

∗《化学名词》（第二版）03.1751。
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图 8.3: 叶绿素

的提取与分

离实验。

SEC 的柱子填料是含有微孔的颗粒。这些颗粒的孔径决定了能被分离的分子尺寸范围。

SEC最需要注意的原理是：分离是基于分子尺寸而非分子量。我们将会了解到这里的尺寸是

聚合物在稀溶液中的流体动力学体积 𝑉h，而由 Flory–Fox粘度公式，流体动力学半径又大致上

正比于聚合物在同样条件下的均方末端距。根据图7.2a来估计，柱子填料孔径的一般范围应是

几到几百纳米。如果同时要求高分辨率和较宽的分子量范围，就要串联多个不同孔径的柱子

进行实验。这又以实验时间的延长为代价。用作 SEC的柱子填粒还需考虑与实验的聚合物、溶

剂和温度三元条件的配合。例如，Styragel是苯乙烯/二乙烯基苯交联共聚物颗粒。这种材料适

用于非极性聚合物溶于良溶剂的流动相，如聚苯乙烯溶于甲苯、四氢呋喃或氯仿等。现代 SEC

柱子的填料还讲究能够承受高压降下若干周的连续使用。从这一例我们也看到，填粒颗粒本

身也是被溶剂溶胀的，这种情况下又叫做凝胶渗透色谱（gel permeation chromatography, GPC）。

但是也很多尺寸排除色谱的填料工作时并非溶胀状态，因此更通用的名称仍是尺寸排除色谱。

SEC工作时，首先要让溶剂以稳定的低流速（一般是 1ml/min）通过柱子，达到平衡状态。

然后将待测高分子溶液从柱子上游的另一个口注入流动相中，流动相携带高分子溶液通过柱

子。溶剂的这种稳定的低流速是通过泵来实现的，对泵的性能要求较高，所以 SEC仪器使用的

泵一般比较昂贵。所使用的溶剂除必须是聚合物的良溶剂外，还必须不利于聚合物在填料得粒与溶剂两相界

面发生吸附，使得对试样的分离机理纯粹基于尺寸差异。如图8.4所示，一个分子尺寸不一的混合物试样，成功

被一个 SEC柱子分离之后，在不同的时间点流出柱子并被检测器检出，对应色谱图上不同时间处的信号峰。

如果柱子对试样没有分离效果，那么所有组份将同时流出柱子，在色谱图上对应一个峰。

图 8.4: 尺寸排除色谱的分离过程。

SEC的检测器可以安装不止一种。不同的检测器对淋出液的不同性质作出响应。最基本的就是浓度检测

器，包括折光指数检测器和紫外可见吸收检测器。除了浓度检测器外还经常辅以其他可以换算成分子量的性

质检测器，比如光散射、粘度等。SEC得到的色谱图一般是浓度检测器输出的，它的信号强度常假定与淋出液

的浓度成正比。色谱图的横坐标本是时间，但通过已知的流动相流速常换算成淋出体积 𝑉e。
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前面强调过，SEC分离试样是基于分子尺寸而非分子量。若想把 SEC实验的直接结果与分子量相联系，

需要用一系列已知分子量的窄分布聚合物样品对给定的一个柱子进行标定（calibration）。具体地，在给定温

度下，把某分子量为 𝑀 的单分散聚合物注入以某溶剂为流动相的柱子并开始计时，聚合物流出柱子时检测器
将输出一个窄峰，对应的检出的时间可由已知的流速换算为淋出体积 𝑉e。对一系列不同分子量的单分散聚合
物样品进行标定，得到一系列 (𝑀, 𝑉e)数据点。惯例上，我们把分子量对数 log𝑀 对淋出体积 𝑉e 作图，就得到
一条标定曲线——尽管从实验逻辑来看似应以分子量为自变量、淋出体积为因变量。标定曲线一般如图8.5所

示，可分为三个部分。第一部分和第三部分，曲线是竖直的，说明这些范围的分子量的组份都同时被淋出柱子，

无法被这个柱子分离。只有中间部分，曲线是斜的，每个分子量唯一对应一个淋出体积，说明这些范围的分子

量的组份能被这个柱子分离。标定曲线的斜率越大，越小的分子量差异能被分辨（分辨率高），也就是柱子的

分离效果越好。第一部分对应的淋出体积 𝑉0 是填粒颗粒间的空隙体积；对应的是分子完全没有进入颗粒内
的孔隙，仅通过颗粒间空隙所需的时间；第二部分的淋出体积 𝑉i 则是由于分子除了通过颗料间隙之外，还遍
历了所有颗粒内部孔隙所额外增加的时间。在可被分离范围内的某个分子量 𝑀 对应的淋出体积 𝑉e 将在 𝑉0
与 𝑉i 之间，常表示成 𝑉e = 𝑉0 + 𝐾SEC𝑉i，其中 𝐾SEC 是一个介于 0与 1之间的系数，叫做柱子分配系数（column

partition coefficient）。

标定曲线的具体形状取决于柱子填料的孔径分布、流动相的性质、温度等因素。标定曲线必须在与待测

样品相同的溶剂和温度条件下进行。

𝑉𝑉e

log𝑀𝑀

𝑉𝑉e

𝑉𝑉i𝑉𝑉0

检测器信号

不可分离

不可分离

可分离

图 8.5: 用某聚合物、溶剂在某温度下对某尺寸排除色谱柱的标定曲线。

把多分散聚合物试样注入到尺寸排除色谱柱中，检测器会输出很宽的连续信号峰。这是不同分子量的组

分先后流出柱子被检测到的叠加结果。利用同种聚合物在同种溶剂同温度下的标定曲线，我们可以把这个色

谱图换算成分子量分布，以及计算平均分子量。这需要我们首先具备这种聚合物各分子量的窄分布试样；最

直接的办法就是从多分散聚合物试样进行分级。

我们把该宽分布聚合物试样给出的色谱图记作 𝐼 (𝑉e)，其中 𝐼 是检测器输出的信号强度，假定与淋出液中
该聚合物的浓度成正比∗，或者可以通过对该检测器标定得到的工作曲线由信号强度得到浓度。把曲线 𝐼 (𝑉e)
等分成 𝑚个小区间，每个区间宽度为 Δ𝑉e ≡ 𝑉e/𝑚，第 𝑖个区间的中心淋出体积为 𝑉e𝑖，对应的检测器信号强度
为 𝐼𝑖 ≡ 𝐼 (𝑉e𝑖)，组成浓度为 𝐶𝑖。另一方面，通过柱子的标定曲线，又可把各 𝑉e𝑖 换算成对应的分子量 𝑀𝑖，我们就
能知道，组成浓度为 𝐶𝑖 的组份的分子量为 𝑀𝑖，这就得到了分子量分布的离散化表示。把 𝐶𝑖 和 𝑀𝑖 代入数各种
平均分子量的定义式，就能计算出该宽分布聚合物试样的各种平均分子量。

∗折光指数检测器原理是溶液的折光指数 𝑛对溶质浓度 𝐶 的依赖性，在足够稀时有 𝑛 (𝐶) = 𝑛s + (d𝑛/d𝐶) + ⋯，只要 d𝑛/d𝐶 不再依赖分子量，检测信号就
与浓度成正比。紫外可见吸收光谱一般遵循朗伯–比尔定律，故其信号亦与浓度成正比。
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对于没有获取对应的标定曲线的聚物试样，可以采用普适标定（universal calibration）的方法，用不同

聚合物的标定曲线来换算出分子量分布。这种做法的合理性要基于 Flory–Fox 系数 Φ 的普适性以及 Mark–

Houwink形式的普适性；而这两个假定只要溶液足够稀就能满足（强极性或聚电解质溶液除外）。具体地，由

上一节的介绍可知，聚合物的流体动力学体积满足 𝑉h ∝ [𝜂]𝑀，比例系数是 2/ (5𝑁A)是常数。SEC的结果就是
基于流体动力学体积的分离。因此，如果我们用一种标准聚合物对柱子进行了标定，再用该柱子做一个待测

聚合物的 SEC实验，那么我们至少可以知道两聚合物的结果之间，相同的淋洗体积 𝑉e对应的流体动力学体积
是相同的，即有

𝑉h,𝑠 = 𝑉h,𝑢 ⇔ [𝜂]s𝑀s = [𝜂]u𝑀u

其中下标 𝑠 表示标准聚合物，下标 𝑢 表示待测聚合物。如果我们再承认 Mark–Houwink公式的普适性，那么

只要再同时知道标准聚合物和待测聚合物的Mark–Houwink参数∗：𝐾s, 𝑎s和 𝐾u, 𝑎u，代入上式就能得到；

𝑀u = (𝐾s

𝐾u
)
1/(𝑎u+1)

𝑀 (𝑎s+1)/(𝑎u+1)
s

这就把待测聚合物的分子量 𝑀u 与标准聚合物的分子量 𝑀s 联系起来了。只用一种标准聚合物去标定过的柱

子，原则上能用于测量任何聚合物的分子量分布。图8.6展示了不同聚合物的 log ([𝜂]𝑀) 对淋洗体积的关系，
说明了普适标定的合理性。

图 8.6: 不同聚合物试样的 log ([𝜂]𝑀)对淋洗时间（elution volume）作图。图自[20]。

∗标准聚合物一般是常见聚合物，如果待测聚合物也是常见的聚合物，那么二者的 Mark–houwink参数都能够查手册得到；如果待测聚合物是新型的，

那它的Mark–Houwink参数就需要另行测定。
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8.5 特性粘度与接触交叠浓度的关系

在上一讲中我们介绍过临界交叠浓度 𝐶∗ 的概念，它跟聚合物溶液中的分子链尺寸有关。本讲我们知道
了流体动力学体积 𝑉h，它也可以用来估算 𝐶∗。由于 𝑉h ∝ [𝜂]𝑀，我们可以得到 𝐶∗ ∝ 2.5/ [𝜂]。实际上更常把 𝐶∗
估算为 1/ [𝜂]或 2.5/ [𝜂]。由于实际聚合物常有分子量分布，由稀溶液到亚浓溶液的过渡并不十分清晰。因此
这些估算方法的差异并不重要。我们只是为了给出何时为 𝐶 ≪ 𝐶∗或 𝐶 ≫ 𝐶∗的定量标准。
通过特性粘数来划分溶液的浓度界限是很合理的。联系式(8.1)，我们看到增比粘度等号右边写出来两项。

增比粘度的意义是除溶剂外，溶质对溶液粘度的贡献。这两项的第一项就是 𝐶 [𝜂]。因此当 𝐶 [𝜂] ≈ 1，聚合物溶
质对溶液粘度的贡献就跟溶剂相当。第二项，𝑘H [𝜂]2 𝐶2，则表示聚合物链间相互作用对粘度的贡献，因此当然
是要在 𝐶 [𝜂] > 1（即 𝐶 > 𝐶∗ ∝ 1/ [𝜂]）不可忽略时才重要。换句话说，当 𝐶 > 𝐶∗ 时，聚合物链间的相互作用开
始不可忽略地贡献溶液的粘度了。这恰好与临界交叠浓度 𝐶∗的物理意义相符。
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第九讲 高分子溶液的光散射

9.1 光散射的准备知识

9.1.1 平面电磁波的基本描述

我们已经知道，光是电磁波。对电磁波的描述应同时写下电场和磁场。但是在有机物的讨论中，常假定试

样没有磁效应，因此只需考虑电场 E。

一束单色平面电磁波的电场可以表示为

E (r, 𝑡) = E0 cos (𝜔𝑡 − k ⋅ r + 𝛿) (9.1)

其中 E0 电磁波的电场幅值，r是空间位置矢量，𝑡 是时间，𝜔是电磁波的角频率，k是波矢（wave vector），𝛿 是初
相位，为形式简洁描述单束光的时候常通过规定 𝑡 的零时刻使 𝛿 = 0，但讨论两束光的干涉时，𝛿 就很重要了。

𝜔与我们常说的光的波长 𝜆、频率 𝜈、波数 ̃𝜈 的关系为
𝜔 = 2𝜋𝜈 = 2𝜋𝑐

𝜆 , ̃𝜈 = 𝜆−1

其中 𝑐 是真空中的光速。
波矢是描述波的传播方向和波长的矢量，它的方向与波的传播方向相同，大小为 2π/𝜆。在 3维空间中建

立直角坐标系 𝑂𝑥𝑦𝑧，假定波的传播方向为 𝑥 轴正方向，则空间某处 r = 𝑥 î + 𝑦 ĵ + 𝑧k̂处的电场强度就是
E (r, 𝑡) = E0 cos (k ⋅ r − 𝜔𝑡) = E0 cos (2π𝑥/𝜆 − 𝜔𝑡)

在括号内，2π𝑥/𝜆描述了给定时刻 𝑡 下，沿 𝑥 方向周期为 𝜆的正弦函数，而 𝜔𝑡 描述了某位置 r处的电场强度随

时间的变化是频率为 𝜈 的正弦函数。图9.1展示了某时刻下的空间分布快照。可见，在传播方向（𝑥 轴）上任一
位置的 𝑦 − 𝑧平面上，电场强度的波动性质都一致，只是幅值 E0 = E0 (𝑦 , 𝑧)在该平面上的取值有待定的二维分
布。所以把这种形式的波称为平面波（plane wave）。

图 9.1: 某时刻 𝑡 下，单色平面波的电场在空间的分布示意图。

平面电磁波的电场强度幅值 E0 是不依赖时间变化的矢量。由于电磁波是横波，E0 的方向与波的传播方
向垂直。E0的大小和方向都在 𝑦 − 𝑧平面上有所分布。如果我们拿一块感光版放在某 𝑦 − 𝑧平面上，用快门获

51



9.1 光散射的准备知识 第九讲 高分子溶液的光散射

取一定曝光时间的的平面电磁波，那么 E0 的这个平面分布就会显像。大部分感光检测器直接检测到的信号
并非电场强度（矢量）本身。以可见光为例，波长 𝜆 = 350 nm ∼ 700 nm，相应的频率是 𝜈 = 𝑐/𝜆 ∼ 10 × 105Hz。这
样高频的振动，无论是人眼还是常规的光电转换器件都是很难跟踪出来的。实际可感知或可测量的只能是单

位时间、单位面积上累积的电磁波能量，即辐照度（irradiance）（单位：W/m2），俗称光强（light intensity），它正

比于电磁波的电场强度幅值模的平方：

𝐼 ∝ ‖E0‖2 = 𝐼 (𝑦, 𝑧)
𝐼 (𝑦 , 𝑧)这个二维光强函数描述了一个灰阶图像。电磁波的经典电动力学理论给出光强的更完整表达式为：

𝐼 = 1
2𝜀0𝜀𝑟

𝑐
𝑛 ‖E0‖2

其中 𝜀0是真空介电常数，𝜀𝑟 是介质的相对介电常数，𝑛是介质的折射率：

𝑛 def= 𝑐
𝑣 = 𝜆0

𝜆
其中 𝑣 是光在介质中的传播速度，𝜆0 是光在真空中的波长，𝜆是光在介质中的波长。实际上，检测器输出的电
信号强弱跟 𝐼 相差一个比例系数，这个比例系数跟光学仪器的特性有关，所以我们只讨论 𝐼 与 ‖E0‖2 成正比的
关系。

由于辐照度只正比于电磁波的幅值的模的平方，所以无法分辨 E0 的方向在 𝑦 − 𝑧 面上的分布信息。用特
殊的非线性光学材料制成的偏振片可以选择性地只允许某个振动方向的光通过，从而获得偏振光（polarized

light）。大部分光源所产生的光，不经过偏振片的话，都是各振动方向都有不同占比的部分偏振光（partially

polarized light）,理想地，我们常讨论各振动方向的光强都相等的非偏振光（unpolarized light）。

9.1.2 光散射原理

当一束电磁波穿过一个分子时，电磁场将迫使分子中的电子按电场强度的变化运动，至少在其原有的运

动上叠加上相应的分量。这其实是分子在一个交变电场下诱导出来的偶极矩的振动。这个偶极矩的振动本身

又是一个电磁波的发射源，重新向四周发射新的一组电磁波（如图9.2所示）。这些由入射光诱导电偶极矩振动

重新发出的光，称为散射光（scattered light），这种现象就叫光散射（light scattering）。散射光与入射光波长相同

的情况叫弹性散射（elastic scattering）。拉曼散射（Raman scattering）和布里渊散射（Brillouin scattering）是两种

非弹性散射（inelastic scattering）。我们将只考虑弹性散射的情况。

图 9.2: 光散射现象示意图。

光散射实验的基本设置如图9.3所示。入射光和散射光的波矢分别是 ki 和 ks，下标“i”和“s”分别表示

入射（incident）和散射（scattered）。这两速光的夹角叫散射角（scattering），记为 𝜃 ∗。定义散射矢量（scattering

vector）为

q
def= ki − ks

则有 𝑞 ≡ ‖q‖ = (4π𝑛/𝜆) sin (𝜃/2)，其中 𝑛是溶液的折射率。
∗有些资料中把这个夹角定义为 2𝜃。
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图 9.3: 光散射实验的基本设置示意图。

如果入射光同时照射多个分子，各个分子的散射光之间有可能发生相干。典型的例子就是晶体的衍射与

布拉格定律（《大学物理（上册）》§11.8）。衍射条纹与散射角 𝜃 的关系是散射光干涉加强或相消的结果（如
图9.2所示）。相干加强的条件又称布拉格条件（Bragg’s condition），即

2𝑑 sin 𝜃 =波长𝜆的整数倍

其中 𝑑 是两束散射光源自的两个晶面的间距。当 𝜆 ≫ 𝑑 时，sin 𝜃 → 0即 𝜃 → 0，此时所有非零 𝜃 角都近乎无光，
因此可见光（𝜆 ≈ 500 nm）打入一块水晶（𝑑 ≈ 1Å）是“晶莹剔透”的，但用 X-射线（𝜆 ≈ 1.54Å）照射可看到衍射
斑纹。这也是晶体的点阵结构常用 X-射线衍射法研究的原因。

如果分子排布没有固定且周期性的规律，那么光的散射强度将在一个比较宽的散射角范围呈现一个连

续的分布 𝐼s (𝜃)，这里的下标“s”表示散射。此时我们更关心入射光的波长跟散射物体（由分子组成）的总体尺

寸之间的比较。这里先简要地概括一下。当入射光的波长远大于散射体尺寸，可视散射体为孤立的几何点时，

散射光强的规律符合瑞利散射（Rayleigh scattering）。当入射光波长接近或小于散射体尺寸时，散射规律就处

于米氏散射（Mie scattering）。我们将重点介绍瑞利散射。

9.1.3 瑞利散射

我们更加细致地考虑只有一个散射源的情况。记入射电磁波的电场为 Ei，在它作用下，一个位于原点处、

极化率为 𝛼 的分子所产生的偶极矩振动可表示成

𝝁 = 𝛼Ei = 𝛼E0,i cos (𝜔𝑡) (9.2)

在这里，我们代入了平面电磁波的表达式(9.1)并令 r = 0和 𝛿 = 0。可见，这个偶极矩振动的频率与入射光的频
率相同，但振幅大小正比于 𝛼。
我们将建立一个以这个点偶极矩的位置为原点的直角坐标系 𝑂𝑥𝑦𝑧，使得入射光的波矢 ki沿 𝑥 轴正方向，

振动方向（即 E0,i 的方向）沿 𝑧 轴正方向（即图9.4中 𝛽 = 0的情况）。同时我们又可把该直角坐标系转换为球
坐标系 𝑂𝑟𝜙𝜃，使得观察方向（即散射光的传播方向）与入射方向（𝑥 轴）的夹角为 𝜃，即为散射角。在这个设定
下，观察方向与运动方向的夹角 𝜒 就等于 𝜙。
正弦振荡的偶极矩涉及持续加速的电荷运动，因此它本身会作为源向外发射电磁波，我们把这个重新发

射的电磁波视为由点这个点偶极矩（现在位于原点）发出的球面波。依据经典电动力学理论的推导，这个球面

波的电场 Es在远离偶极矩的地方近似于以下形式：

Es (r, 𝑡) = 1
4π𝜀0𝑐2𝑟

[n̂ × (n̂ × ̈𝝁)]ret
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图 9.4: 光散射方向的坐标系示意图。

其中 n̂ = r/𝑟 是观察方向的单位矢量， ̈𝝁是偶极矩的二阶时间导数，表示电荷加速效应；𝜀0是真空介电常数。下
标“ret”表示括号内的量要取其在视在时间（retarded time）的值，即 𝑡′ = 𝑡 − 𝑟/𝑐 时的值。这个视在时间的概念
是因为电磁波以有限速度 𝑐 传播，从偶极矩位置到观察位置 𝑟 处需要 𝑟/𝑐 的时间，因此观察位置处 𝑡 时刻看到
的是偶极矩在 𝑡 − 𝑟/𝑐 时刻的状态。关于该式的详细背景和推导可参考任何一本电动力学教材。

由于我们只关心光散射的强度，因此只需关心 Es的幅值大小：

‖Es‖ = 1
4π𝜀0𝑐2𝑟

‖ ̈𝝁‖ sin 𝜒

这里的 𝜒 是观察方向与偶极矩振动方向的夹角。在现在的讨论当中 𝜒 = 𝜙。把式(9.2)代入上式，就得到

‖Es‖ = 𝛼𝜔2
4π𝜀0𝑐2𝑟

‖E0,i‖ sin 𝜙

因此散射光强与入射光强的比值就是

𝐼s
𝐼i
= ‖Es‖2

‖Ei‖2
= π2𝛼2

𝜀20 𝑟2𝜆4
sin2 𝜙 (9.3)

其中我们将 𝜔 换成了 2π𝑐/𝜆。这个公式是偏振光的瑞利散射公式，因为我们开头假定的这束光是给定某振动
方向的。实际上，我们检测器常设在 𝜙 = π/2处，此时上式 sin2 𝜙 = 1，形式更简单。上式还表明，对于偏振光的
瑞利散射，在与振动方向平行的方向（𝜙 = 0或 π）上没有散射光强。

如果入射光是非偏振光，最一般的考虑就是这束光的是各振动方向的光强占比相等的偏振光的叠加。注

意，式(9.3)中是假定了 E0,i 沿 𝑧 轴振动的情况（即图9.4中 𝛽 = 0）。如果入射光的振动方向变了，但是我们坐标
系不跟着它变，但式(9.3)的精神不变，只是 𝜙不再等于观察方向与入射光振动方向的夹角 𝜒 了，则观察方向与
入射光振动方向的夹角 𝜒 满足

cos 𝜒 = sin 𝛽 sin 𝜃 sin 𝜙 + cos 𝛽 cos 𝜙

式(9.3)就改成了

𝐼s
𝐼i
= π2𝛼2

𝜀20 𝑟2𝜆4
sin2 𝜒

= π2𝛼2
𝜀20 𝑟2𝜆4

(1 − cos2 𝜒)

= π2𝛼2
𝜀20 𝑟2𝜆4

[1 − (sin 𝛽 sin 𝜃 sin 𝜙 + cos 𝛽 cos 𝜙)2]
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现在我们把入射光是非偏振光的情况考虑为 𝛽 在 [0, π)上均匀分布的偏振光的平均，则只需对上式作对 𝛽 的
平均，即

𝐼s
𝐼i
= π2𝛼2

𝜀20 𝑟2𝜆4

× 1
π ∫

π

0
[1 − (sin 𝛽 sin 𝜃 sin 𝜙 + cos 𝛽 cos 𝜙)2] d𝛽

= π2𝛼2
𝜀20 𝑟2𝜆4

(1 − 1
2 sin

2 𝜃 sin2 𝜙 − 1
2 cos

2 𝜙)

这个公式就是非偏振光的瑞利散射公式。类似之前的讨论，实际检测器常设在 𝜙 = π/2处。上式就变成了
𝐼s
𝐼i
= π2𝛼2

2𝜀20 𝑟2𝜆4
(1 + cos2 𝜃) (9.4)

式(9.3)和(9.4)都是单个点偶极矩的散射公式。如果在散射体积 𝑉 内有 𝑁 个点偶极矩，且它们相距较远而
互相独立，则各个偶极矩的散射光强满足线性叠加，散射体积 𝑉 的总散射光强就是：

𝐼 tots (𝑉 )
𝐼i

= π2𝛼2
2𝜀20 𝑟2𝜆4

(1 + cos2 𝜃) ⋅ 𝑁 (9.5)

定义瑞利比（Rayleigh ratio）为

𝑅𝜃 def= 𝐼 tots 𝑟2
𝑉 𝐼i (1 + cos2 𝜃) = π2𝛼2

2𝜀20𝜆4
𝑁
𝑉

其中 𝑉 必须是散射体积，𝑁 是该体积内的散射体数目。则散射光强与入射光强的比值可写成
𝐼 tots

𝐼i
= 𝑉 𝑅𝜃

𝑟2 (1 + cos2 𝜃) (9.6)

9.2 溶液的光散射

9.2.1 溶液的光散射是由浓度涨落造成的

一个均相的溶液体系，里面充满了分子。虽然每个分子可以视为一个可被外加电场极化的偶极矩，但是

由于液体的分子空间密度很大，它们之间很难说是独立的。因此一束入射光的散射体积之内的大量分子造成

的散射不能像式(9.6)那样简单地把单个分子的散射光强线性叠加起来。从宏观热力学的角度来看，作为一个

处于热力学平衡态的系统，溶液的光学性质均一（处处相同）的。这是无法造成光散射的，因为入射光造成的

偶极振荡处处同相而相消。Einstein在 1910年指出，溶液的光散射是由于浓度的局部涨落造成的。

第五讲已经介绍过的浓度涨落（图5.2），其实对于处于平衡态的均相宏观系统的任一强度性质 𝑀，在微观
尺度上都会有涨落。这是的“尺度”是包括时间和空间的。以时间为例，如果仪器足够灵敏，那么一段时间内

仪器对该系统测量到的 𝑀 值就是一个围绕恒定的系统的平均值 ⟨𝑀⟩上下随机波动的时间曲线 𝑀 (𝑡)，这是这
个系统的性质 𝑀 的时间涨落，其来源包括但不仅限于体系的分子热运动。在任意时刻 𝑡 开始测量 Δ𝑡 的时间，
我们将得到一个时间平均值

𝑀 (𝑡, Δ𝑡) = 1
Δ𝑡 ∫

𝑡+Δ𝑡

𝑡
𝑀 (𝑡′) d𝑡′

由于涨落，这个时间平均值也依赖测量开始的时刻 𝑡 和测量时长。但是按照平衡态的公理，我们相信只要 Δ𝑡
足够长，𝑀 (𝑡, Δ𝑡)就不再依赖 𝑡 和 Δ𝑡，而趋于系统的这个性质的平衡态系综平均值 ⟨𝑀⟩，写成式子就是：

limΔ𝑡→∞
1
Δ𝑡 ∫

𝑡+Δ𝑡

𝑡
𝑀 (𝑡′) d𝑡′ = ⟨𝑀⟩ , ∀𝑡,热力学平衡态
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同样地，对于空间我们也有此类的涨落与平均。如果我们把宏观体系所占据的空间分割成网格，每个网

格体积 𝛿𝑉 足够小，使得不同格子之间的性质 𝑀 有明显的空间涨落;同时 𝛿𝑉 足够大，其内仍然含有大量分子，
可适用于热力学规律，且各格子之间的涨落是独立的。那么任一时刻，各网格的性质 𝑀 取值也会不同，且它
们各自都作时间涨落。如图9.5，我们用不同灰阶亮度表示某系统的性质 𝑀 在空间的分布。

图 9.5: 宏观体系强度性质的涨落与系统平均示意图。

第五讲中，如果系统平均浓度置其于一个不稳定的平衡态，那么涨落的尺度会越来越大，直到系统分裂成

两个相。但如果系统处于一个稳定的平衡态（或者说远离相变），则系统性质的涨落尺度会恒定在一个有限的

范围内——这是本节讨论的前提。

溶液浓度的涨落引起光学性质的涨落，从而造成光散射。我们在式(9.3)中看到，真空中如果出现了单个具

有极化率 𝛼 的偶极矩，那么它就会散射光。在溶液中，我们假定上述的网格的每个格子大小都远小于入射光
的波长。那么当任一格子的瞬时浓度 𝐶 由于涨落而与平均浓度 𝐶 相差 𝛿𝐶 时，在入射电磁波的外场作用下这
个格子将遵循单偶极矩瑞利散射的规律造成的额外偶极矩振动，从而发射额外的散射光强。由不同格子造成

的额外散射光强，发生的时间和位置是跟着浓度涨落而变化的，因此它们之间是互不相干的，将会发射出来，

而被检测器接受到。按照假定不同格子间的涨落是相互独立的因此，因此可利用瑞利散射的叠加来获得一个

散射体积同的总散射光强。

按照上述精神，瑞利散射体就是一个格子，它拥有一个会涨落的极化率。如果涨落幅度不太大，极化率涨

落可以写成 𝛼 = ⟨𝛼⟩ + 𝛿𝛼。⟨⋅⟩表示整个系统的平均值，在热力学平衡态下它是一个常数。既然如此，等号左右
两边同取 ⟨⋅⟩，就有 ⟨𝛿𝛼⟩ = 0。与此同时，我们又已假定格子足够大，可视为一个小的热力学体系，因此涨落的
极化率 𝛼 又是这个格子的状态函数 𝛼 (𝑇 , 𝑝, 𝐶)，其中 𝑇、𝑝 和 𝐶 是这个格子的温度、压强和浓度，它们也是涨落
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的瞬时值。应用函数的全微分，我们可以写下

𝛿𝛼 ≈ 𝜕𝛼
𝜕𝑇 |𝑝,𝐶 𝛿𝑇 + 𝜕𝛼

𝜕𝑝 |𝑇 ,𝐶
𝛿𝑝 + 𝜕𝛼

𝜕𝐶 |𝑇 ,𝑝 𝛿𝐶

现在我们再引入一个假定，那就是极化率关于温度和压强的变化率远小于关于浓度的变化率，即上式前

两项远小于最后一项。这在常温常压大部分溶液中是成立的。忽略前两项后得到

𝛿𝛼 ≈ 𝜕𝛼
𝜕𝐶 |𝑇 ,𝑝 𝛿𝐶

既然造成散射的是与在平均浓度性质上的涨落值，则应把式(9.3)中的 𝛼 替换成 𝛿𝛼，所造成的散射光强也
一是一个涨落值 𝛿𝐼s，我们得到 𝛿𝐼s

𝐼i
= π2

𝜀20 𝑟2𝜆4
(𝛿𝛼)2

实际测量的散射光强是一段足够长时间内的平均，因此可用系综平均值来表示：

⟨𝛿𝐼s⟩
𝐼i

= π2
𝜀20 𝑟2𝜆4

⟨(𝛿𝛼)2⟩

注意，虽然 ⟨𝛿𝛼⟩ = 0，但 ⟨(𝛿𝛼)2⟩一般不为零。它作为涨落的方差，表征涨落的平均幅度。代入 𝛿𝛼 与 𝛿𝐶 的关系
式，得到

⟨𝛿𝐼s⟩
𝐼i

= π2
𝜀20 𝑟2𝜆4

( 𝜕𝛼
𝜕𝐶 |𝑇 ,𝑝)

2
⟨(𝛿𝐶)2⟩ (9.7)

取了系综平均之后，格子间差别就取消了。上式虽然是来自一个格子的结果，但已是任一格子的一致结果——

即整个系统的结果。该式表达了溶液散射正比于浓度涨落的方差。还依赖极化率随浓度的变化率。这其实依

赖溶质性质体现的 𝛼 (𝐶)函数形式上，不同溶液体系是不同的，只能实测。而测量极化率又不方便，所以需要
再讨论这个导数。

9.2.2 局域极化率与折射率的关系

一个格子的极化率 𝛼 与它的介电常数 𝜀 有关，后者又跟格子的折射率 𝑛有关。所以极化率的浓度依赖性
也就来自介电常数的浓度依赖性 𝜀 (𝐶)，进而来自折射率的浓度依赖性 𝑛 (𝐶)。假定外场对该格子的极化满足
线性关系，则电极化强度 P与入射电磁波在该格子实际造成的电场 E成正比，格子的总偶极矩：

𝝁 = P𝛿𝑉 = 𝛿𝑉 𝜀0 (𝜀 − 1)E = 𝛼E

因此

𝛼 (𝐶) = 𝛿𝑉 𝜀0 (𝜀 (𝐶) − 1)
𝜕𝛼
𝜕𝐶 |𝑇 ,𝑝 = 𝛿𝑉 𝜀0 𝜕𝜀

𝜕𝐶 |𝑇 ,𝑝
在非磁性介质中，介电常数与折射率的关系为 𝜀 = 𝑛2（作为弹性散射使用折射率的实部），因此

𝜕𝜀
𝜕𝐶 |𝑇 ,𝑝 = 2 ⟨𝑛⟩ 𝜕𝑛

𝜕𝐶 |𝑇 ,𝑝
注意这里出现的偏导数都是在 ⟨𝑇 ⟩ , ⟨𝑝⟩ , ⟨𝐶⟩处的值。把这些都代入式(9.7)，得到

⟨𝛿𝐼s⟩
𝐼i

= (𝛿𝑉 )2 4π
2 ⟨𝑛⟩2
𝜆4𝑟2 ( 𝜕𝑛

𝜕𝐶 |𝑇 ,𝑝)
2
⟨(𝛿𝐶)2⟩ (9.8)

式中折射率对浓度的偏导数又常直接以导数相称“d𝑛/d𝐶”，是可以实验测量的量。至于浓度涨落的方差，
在下节讨论中将联系到溶剂在溶液中的化学势。
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9.2.3 浓度涨落与化学势的关系

视 𝛿𝐶 为一个随机变量，它的取值范围理论上可以是整个实数 (−∞, +∞)。记它的概率密度函数为 𝑓 (𝛿𝐶)，
则它的方差可表示成

⟨(𝛿𝐶)2⟩ = ∫
+∞

−∞
(𝛿𝐶)2 𝑓 (𝛿𝐶) d (𝛿𝐶)

定温定压下，浓度变化造成吉布斯自由能变化，而吉布斯自由能是这种情况下系统的热力学势。恒温体系的

状态分布服从玻尔兹曼分布，其中需要的势能就是吉布斯自由能。浓度涨落 𝛿𝐶 的概率密度函数应该正比于
exp (−𝛿𝐺/𝑘B𝑇 )，其中

𝛿𝐺 = 𝐺 (⟨𝐶⟩ + 𝛿𝐶) − 𝐺 (⟨𝐶⟩)
是由于浓度涨落 𝛿𝐶 造成的吉布斯自由能涨落。此时 𝑓 (𝛿𝐶)可写成

𝑓 (𝛿𝐶) = 𝐴 exp [− 𝛿𝐺
𝑘B𝑇

]

其中 𝐴是归一化系数。若涨落幅度 𝛿𝐶 很小，可拿 𝛿𝐺 在 𝛿𝐶 = 0处进行泰勒展开：
𝛿𝐺 = 𝜕𝐺

𝜕𝐶 |
𝑇 ,𝑝

𝛿𝐶 + 1
2
𝜕2𝐺
𝜕𝐶2 |𝑇 ,𝑝

(𝛿𝐶)2 + ⋯

注意到 𝛿𝐺 (0) = 0，且在稳定的平衡态下，(𝜕𝐺/𝜕𝐶)𝑇 ,𝑝 = 0且 (𝜕2𝐺/𝜕𝐶2)𝑇 ,𝑝 > 0，更高次项可忽略。此时

𝑓 (𝛿𝐶) = 𝐴 exp [−1
2
𝜕2𝐺
𝜕𝐶2 |𝑇 ,𝑝

(𝛿𝐶)2
𝑘B𝑇

]

由归一化条件可得

𝐴 =
√

(𝜕2𝐺/𝜕𝐶2)𝑇 ,𝑝
2π𝑘B𝑇

代入 ⟨(𝛿𝐶)2⟩的表达式作积分就可以得到

⟨(𝛿𝐶)2⟩ = 𝑘B𝑇
(𝜕2𝐺/𝜕𝐶2)𝑇 ,𝑝

自由能对浓度的二阶偏导可以用化学势来表示。这里明确浓度 𝐶 是质量浓度，即单位体积内的溶质质
量。因此

𝜕2𝐺
𝜕𝐶2 |𝑇 ,𝑝

= 𝑉
𝑀

𝜕𝜇2
𝜕𝐶 |

𝑇 ,𝑝
其中 𝑉 是所考虑的溶液的体积，𝑀 是溶质的摩尔质量。又由恒温恒压下的吉布斯–杜亥姆方程

𝑛1d𝜇1 + 𝑛2d𝜇2 = 0 ⇔ 𝜕𝜇2
𝜕𝐶 |

𝑇 ,𝑝
= −𝑛1

𝑛2
𝜕𝜇1
𝜕𝐶 |

𝑇 ,𝑝
稀溶液近似下，渗透压满足式(1.14)，对其两边对 𝐶 求偏导，得到

𝜕Π
𝜕𝐶 |

𝑇 ,𝑝
= − 𝜕𝜇1

𝜕𝐶 |
𝑇 ,𝑝

(𝑉 ∗
m,1)

−1

其中 𝑉 ∗
m,1是纯溶剂的摩尔体积。利用渗透压关于质量浓度的位力展开式(1.16)，用这里的记号，可得

𝜕Π
𝜕𝐶 |

𝑇 ,𝑝
= 𝑅𝑇 ( 1

𝑀 + 2𝐴2𝐶 + ⋯)

把所有这些都代入到 ⟨(𝛿𝐶)2⟩的表达式中，得到

⟨(𝛿𝐶)2⟩ = 𝐶
𝛿𝑉𝑁A ( 1

𝑀 + 2𝐴2𝐶 + ⋯)
其中我们用到了极稀时 𝑛1𝑉 ∗

m,1 ≈ 𝑉，以及在考虑 𝛿𝐶 时，体积应是格子体积 𝛿𝑉。
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9.2.4 溶液的瑞利散射公式

把这个结果代入式(9.8)，得到一个格子造成的散射光强比：

⟨𝛿𝐼s⟩
𝐼i

= (𝛿𝑉 )2 4π
2 ⟨𝑛⟩2
𝑟2𝜆4 ( 𝜕𝑛

𝜕𝐶 |𝑇 ,𝑝)
2 𝐶
𝛿𝑉𝑁A ( 1

𝑀 + 2𝐴2𝐶 + ⋯)

如果散射体积 𝑉 内有 𝑁 = 𝑉/𝛿𝑉 个这样的格子，且它们之间的涨落是独立的，则总散射光强比就是

𝐼 tots (𝑉 )
𝐼i

= 𝑉
𝛿𝑉

⟨𝛿𝐼s⟩
𝐼i

= 𝑉 4π2𝑛2
𝑟2𝜆4 ( 𝜕𝑛

𝜕𝐶 |𝑇 ,𝑝)
2 𝐶
𝑁A ( 1

𝑀 + 2𝐴2𝐶 + ⋯)
(9.9)

其中 𝛿𝑉 2 恰好约掉了，同时我们也把溶液的平均折射率 𝑛的平均号去掉了。注意这个结果最初是采用了偏振
方向沿 𝑧 轴的入射光的式子得到的。如果入射光是非偏振光，则总散射光强比应乘以 (1 + cos2 𝜃) /2。按照教
科书习惯我们保持偏振入射的讨论。此时，瑞利比为

𝑅𝜃 = 𝑟2
𝑉
𝐼 tots (𝑉 )

𝐼i
= 4π2𝑛2

𝜆4 ( 𝜕𝑛
𝜕𝐶 |𝑇 ,𝑝)

2 𝐶
𝑁A ( 1

𝑀 + 2𝐴2𝐶 + ⋯)

若再把等号右边的光学因素定义为光学常数（optical constant）：

𝐾 def= 4π2𝑛2
𝜆4𝑁A

( 𝜕𝑛
𝜕𝐶 |𝑇 ,𝑝)

2

则式(9.9)可整理成
𝐾𝐶
𝑅𝜃

= 1
𝑀 + 2𝐴2𝐶 + ⋯ (9.10)

我们可对式(9.10)作若干有益讨论。首先，当浓度很低时，略去高次项，则式(9.10)给出一条直线。测定一系

列不同浓度（但都要很稀）的等号左边量（等号左边全是实验可测量的，详见最后一节），对浓度作图，应该近

乎直线，其在 𝐶 = 0处的截距就是溶质的摩尔质量𝑀 的倒数，斜率就是第二位力系数 𝐴2的两倍。这就是通过
稀溶液光散射测量溶质分子量的方法。对于多分散聚合物溶液，由于

lim𝐶→0𝑅𝜃 = 𝐾𝐶𝑀

也就是说在极稀时 𝑅𝜃 近似是分子量 𝑀 的线性函数，故对于多分散聚合物具有加和性：

(𝑅𝜃 )𝐶→0 = 𝐾 ∑
𝑖
𝐶𝑖𝑀𝑖

其中 𝐶𝑖是分子量为 𝑀𝑖的级分的浓度。如果我们通过上述的截距法得到一个平均分子量 𝑀，那就有

𝐶𝑀 = ∑
𝑖
𝐶𝑖𝑀𝑖

⇒ 𝑀 = ∑𝑖 𝐶𝑖𝑀𝑖
∑𝑖 𝐶𝑖

= ∑𝑖 (𝑛𝑖𝑀2𝑖 /𝑉 )
∑𝑖 (𝑛𝑖𝑀𝑖/𝑉 )

= ∑𝑖 𝑛𝑖𝑀2𝑖
∑𝑖 𝑛𝑖𝑀𝑖

= 𝑀w

可见，用光散射法测得的平均分子量是重均分子量。
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9.2.5 用光散射法测量聚合物的均方回转半径

一般用来做光散射的入射光波长是可见光波段的，约在 400 nm到 700 nm之间。而大部分聚合物在稀溶
液中的均方回转半径 𝑅g都在 1 nm到 10 nm之间，并非远小于入射光的波长量级。此时，大分子的内部结构密
度涨落也能够造成光散射，但它与大分子作为溶质的溶液浓度涨落有不同的定量规律。前者的效应贡献，将

使光散射的规律偏离上一节的结果。这种偏离反映了大分子内部结构的空间分布统计性质。具体地，如果分

子很大，可按以下思路定义该分子的形状因子（form factor）𝑃 (𝜃)

𝑃 (𝜃) = 实际散射光强 𝐼s (𝜃)
假定分子是点粒子时的散射光强 𝐼 points (𝜃)

这个定义思路，还要求所述的散射光差异仅来自分子尺寸和形状的贡献，不包括两个大分子间的散射光的干

涉效应，因此只适用于溶液非常稀、分子间距很大的讨论。

并不是形状因子的严格定义，因为它忽略了两个大分子之间的散射光的干涉效应造成的偏离，只适用于

溶液非常稀，分子间距很大的情况。

对于线形长链聚合物分子，可视为由 𝑁 个链段组成，每个单体都是一个瑞利散射体，那么一条分子链取
某构象时的散射光电场强度是

Es =
𝑁
∑
𝑗=1

Es,𝑗 =
𝑁
∑
𝑗=1

Es,0 exp [i (𝜔𝑡 + 𝛿𝑗)] = Es,0 exp (i𝜔𝑡)
𝑁
∑
𝑗=1

exp (i𝛿𝑗)

其中我们假定每个链段的散射光电场强度幅值 Es,0 都相同，仅因它们的位置不同造成了不同的相位 𝛿𝑗，最终
它们的叠加造成了整个分子的散射光电场强度。散射光强与电场强度的平方成正比，因此

𝐼s ∝ ‖EsE∗s ‖ ∝ ‖Es,0‖2
𝑁
∑
𝑗=1

𝑁
∑
𝑘=1

𝑒i(𝛿𝑘−𝛿𝑗)

其中“*”号表示复数共轭，它是采用了欧拉公式的复数表示后的求模定义方式。𝛿𝑘 − 𝛿𝑗 是第 𝑘 个链段散射的
光与第 𝑗 个链段散射的光之间的相位差。它可以用散射矢量 q来表示：

𝛿𝑘 − 𝛿𝑗 = (𝛿𝑘 − 𝛿0) − (𝛿𝑗 − 𝛿0) = (ks,𝑘 ⋅ r𝑘 − ki,𝑘 ⋅ r𝑘) − (ks,𝑗 ⋅ r𝑗 − ki,𝑗 ⋅ r𝑗) = q ⋅ (r𝑘 − r𝑗) = q ⋅ r𝑗𝑘
其中 r𝑗 是第 𝑗 个链段的位置矢量，ki 和 ks 分别是入射光和散射光的波矢，r𝑗𝑘 ≡ r𝑘 − r𝑗 是由链段 𝑗 指向链段 𝑘
的矢量。可见，我们把一个长链分子的散射光强与分子链段的空间分布联系了起来。这里面传达的物理实质

是，链段的不同位置重新发出的散射光的相干效应，将体现在散射光强的散射角依赖性上——正如在 𝑋 射线
衍射中晶体结构的原子排布安间位置关系体现在散射光强的散射角依赖，只是由于链段的位置关系是非周

期的，所以这个散射角的依赖性并不会因特定角度的相消或加强造成明确的衍射峰。

此时我们可以按形状因子的定义思路，写下长链分子的散状因子表达式。我们所得到的散射光强是实际

散射光强，作为分子。分母应该是大分子作为一个点粒子时的散射光强，对应于 𝑟𝑗𝑘 → 0时的情况。再者，由于
分子的链段是一直作热运动的，所以 r𝑗𝑘 是一个随机变量。作为形状因子应对其进行系综平均。按照这些想
法，我们写下长链分子的形状因子：

𝑃 (q) = ⟨
∑𝑁

𝑗=1∑𝑁
𝑘=1 𝑒iq⋅r𝑗𝑘

∑𝑁
𝑗=1∑𝑁

𝑘=1 𝑒iq⋅0
⟩ = 1

𝑁 2
𝑁
∑
𝑗=1

𝑁
∑
𝑘=1

⟨𝑒iq⋅r𝑗𝑘 ⟩

其中，按教科书惯例把 𝑃 写成依赖 q的函数，q已包含了对散射角 𝜃 的依赖。按照我们所讨论的问题，这里的
系综平均 ⟨⋅⟩是对所有可取的分子构象的平均。按照统计学的知识，要写出这个平均，我们需要相应的概率密
度函数。记 𝑊 (r𝑗𝑘)为重复单元 𝑗 和 𝑘 之间的矢量为 r𝑗𝑘 的概率密度函数，则

⟨𝑒iq⋅r𝑗𝑘 ⟩ = ∫ℝ3
𝑊 (r𝑗𝑘) 𝑒iq⋅r𝑗𝑘d3r𝑗𝑘 (9.11)
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采用球坐标系 ( ̃𝑟 , ̃𝜃 , ̃𝜙)表示，我们可以把指数函数表示成：

𝑒iq⋅r𝑗𝑘 = 𝑒i𝑞𝑟𝑗𝑘 cos ̃𝜃

其中 𝑞 ≡ ‖q‖。这个表达式是把球坐标的 𝑧 轴取向对准重复单元 𝑗 的位置矢量时的结果。利用级数展开式
𝑒𝑥 = 1 + 𝑥 + 1

2𝑥2⋯，
𝑒i𝑞𝑟𝑗𝑘 cos ̃𝜃 = 1 + i𝑞𝑟𝑗𝑘 cos ̃𝜃 − 1

2𝑞
2𝑟2𝑗𝑘 cos2 ̃𝜃 + ⋯

把上式代入式(9.11)前，我们先计算对任意满足概率密度函数 𝑊 (r)的随机向量 r，

⟨𝑒iq⋅r⟩ = ∫
∞

0
𝑊 (r) ̃𝑟2d ̃𝑟 ∫

2π

0
d ̃𝜙 ∫

π

0
d ̃𝜃 sin ̃𝜃 (1 + i𝑞 ̃𝑟 cos ̃𝜃 + 1

2 i
2𝑞2 ̃𝑟2 cos2 ̃𝜃 + ⋯)

= 2π∫
∞

0
𝑊 (r) ̃𝑟2d ̃𝑟 ∫

π

0
d ̃𝜃 (sin ̃𝜃 + i𝑞 ̃𝑟 sin ̃𝜃 cos ̃𝜃 − 1

2𝑞
2 ̃𝑟2 sin ̃𝜃 cos2 ̃𝜃 + ⋯)

= 2π∫
∞

0
𝑊 (r) ̃𝑟2d ̃𝑟 (2 + 0 − 𝑞2 ̃𝑟2

2!
2
3 + 0 + 𝑞4 ̃𝑟4

4!
2
5 + ⋯)

其中我们用到了

∫
π

0
sin 𝜃 cos𝑚 𝜃d𝜃 = (−1)𝑚 + 1

1 + 𝑚 , 𝑚 = 0, 1, 2, ⋯

又利用级数展开
sin (𝑞 ̃𝑟 )

𝑞 ̃𝑟 = 1 − (𝑞 ̃𝑟 )2
3! + (𝑞 ̃𝑟)4

5! − ⋯

原式可整理成

⟨𝑒iq⋅r⟩ = 4π∫
∞

0
𝑊 (r) ̃𝑟2 sin (𝑞 ̃𝑟 )

𝑞 ̃𝑟 d ̃𝑟

注意到，

4𝜋 ̃𝑟2 = ∫
2π

0
d ̃𝜙 ∫

π

0
sin ̃𝜃d ̃𝜃 ̃𝑟2

因此

⟨𝑒iq⋅r⟩ = ∫ℝ3
𝑊 (r) sin (𝑞𝑟)𝑞𝑟 d3r = ⟨sin (𝑞𝑟)𝑞𝑟 ⟩

由此我们可以很快得出对于 r𝑗𝑘 的式(9.11)的结果：

⟨𝑒iq⋅r𝑗𝑘 ⟩ = ⟨sin (𝑞𝑟𝑗𝑘)𝑞𝑟𝑗𝑘
⟩

我们注意到，在我们的推导过程中并没有假定 𝑊 (r𝑗𝑘)的具体形式，因此上式不依赖链构象的具体统计性质
（比如是理想链还是自回避链）而成立。把上式代入形状因子的表达式，可得到

𝑃 (𝑞) = 1
𝑁 2

𝑁
∑
𝑗=1

𝑁
∑
𝑘=1

⟨sin (𝑞𝑟𝑗𝑘)𝑞𝑟𝑗𝑘
⟩

利用之前列出过的 sin (𝑞𝑟) / (𝑞𝑟)的级数展开式，在 𝑞𝑟𝑗𝑘 都足够小时，可写成

𝑃 (𝑞) = 1
𝑁 2

𝑁
∑
𝑗=1

𝑁
∑
𝑘=1

(1 − 𝑞2
6 ⟨𝑟2𝑗𝑘⟩ +

𝑞4
120 ⟨𝑟

4𝑗𝑘⟩ + ⋯)

而长链分子的均方回转半径的定义恰为（书上的式 (2-18)）

⟨𝑅2g⟩ def= 1
2𝑁 2

𝑁
∑
𝑗=1

𝑁
∑
𝑘=1

⟨𝑟2𝑗𝑘⟩

更新至 2025-09-21 61



9.2 溶液的光散射 第九讲 高分子溶液的光散射

因此

𝑃 (𝑞) = 1 − 𝑞2
3 ⟨𝑅2g⟩ + ⋯

由 𝑃 (𝑞)与实际散射光的关系，实际散射光应等于形状因子乘以把大分子当作点粒子时的散射光。这里需要
注意的是，我们的推导假定的是由一个大分子散射的效果，因此这里需要代入的是去掉位力展开高次项的形

式：

𝑃 = 𝑅𝜃
𝐾𝐶𝑀

其中我们把散射光强之比写成了瑞利比之比，这里的 𝑅𝜃 是大分子的实际散射瑞利比，分母用到了把分子当点
粒子的结果，即上一节的结果。当大分子溶液的浓度不够稀，位力展开项不可忽略，就有

𝐾𝐶
𝑅𝜃

= 1
𝑀𝑃 + 2𝐴2𝐶 + ⋯

利用级数 1/ (1 − 𝑥) = 1 + 𝑥 + 𝑥2 + ⋯
1
𝑃 = 1

1 − (𝑞𝑅g)
2 /3 + ⋯

= 1 + 1
3𝑞

2𝑅2g⋯

故

𝐾𝐶
𝑅𝜃

= 1
𝑀 (1 + 𝑞2

4 𝑅2g + ⋯) + 2𝐴2𝐶 + ⋯

此即书上的式 (2-21)。

配制一系列不同浓度（但都要足够稀）的溶液，测定它们在不同散射角下瑞利因子，由上式可以研究以下

两个极限行为：

𝐾𝐶
𝑅𝜃

|
𝑞→0

= 1
𝑀 + 2𝐴2𝐶 + ⋯

𝐾𝐶
𝑅𝜃

|
𝐶→0

= 1
𝑀 (1 + 𝑞2

3 𝑅2g + ⋯)

因此，拿 𝐾𝐶/𝑅𝜃 对 sin2 (𝜃/2) + 𝛾𝐶 作图（考虑到 𝑞2 ∝ sin2 (𝜃/2)），合理调节 𝛾 把各曲线分离开，就能得到 Zimm

图（例如图9.6）。

图 9.6: 甲基纤维素水溶液在 20 °C时的 Zimm图，数据来自文献[21]。
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9.3 光散射实验

虽然理论上之前提出的公式为分子量测定提供了完整的数学关系，但实际测量中需要确定方程中几个

关键参数。

首先，我们关心瑞利比 𝑅𝜃 的测量。根据定义，瑞利比是单位体积散射光强与入射光强之比乘以距离平方。
而散射体积依赖光束的和试样容器的几何性质，检测器距离也是实验装置的几何参数。如果我们不是用同一

个检测器来检测入射与出射光强，则不同检测器的响应系数也会进入瑞利比的测量中。所以实际上瑞利比是

需要就既定的光散射装置，通过已知瑞利比的标准样品（通常是甲苯）来校准（calibrate）的。图9.6的工作中就

用了苯和甲苯来校准仪器的瑞利比。

同样重要的是折光指数增量 d𝑛/d𝐶，它出现在光散射常数 𝐾 中。由于 d𝑛/d𝐶 在公式中是平方项，其任何
误差都会显著影响分子量结果。因此，d𝑛/d𝐶 值必须通过差示折光仪在与光散射实验相同的条件下精确测定，
不能简单地从文献中估算。

典型的 Zimm图光散射实验的预测量流程如下：首先，使用差示折光仪测定样品在实验温度和波长下的

d𝑛/d𝐶 值，这需要制备一系列不同浓度的溶液。其次，用纯溶剂（如甲苯）校准光散射仪，确定仪器的校准常
数。接着，制备聚合物的系列稀溶液（通常 3到 5个浓度），每个溶液都必须经过严格过滤除尘。然后在多个角

度下测量每个浓度溶液的散射强度，同时测量相应的溶剂背景。最后，将数据作成 Zimm图，通过双重外推获

得分子量、回转半径和第二位力系数等。整个过程中，样品的超净化处理是成功的关键，因为即使微量的灰尘

或聚集体都会导致严重的测量误差。
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附录 A 《高分子物理（第三版）》溶液部分勘误

p.10的这个联等式：

𝑉1Π = −𝑅𝑇 ln 𝑥1 = −𝑅𝑇 ln (1 − 𝑥2) = 𝑅𝑇𝑥2 = 𝑅𝑇 𝑛2
𝑛1 + 𝑛2

第三个等号是不成立的。由级数展开式

ln (1 − 𝑥) = − (𝑥 + 𝑥2
2 + 𝑥3

3 + ⋯)

可知

−𝑅𝑇 ln (1 − 𝑥2) = 𝑅𝑇 (𝑥2 +
𝑥22
2 + 𝑥32

3 + ⋯) ≈ 𝑅𝑇𝑥2

其中约等号只保留到 1次项的近似，在溶质的摩尔分数 𝑥2 非常小（即稀溶液）时成立。因此原书上主该处的
这一结论已经用到了稀溶液假定。

p.13式 (1-12)和 (1-13)分母都应含 𝑟2，即观测距离的平方。式 (1-14)瑞利因子式应再除以散射体积 𝑉。
p.41式 (2-18)分母应含 2，因为右边的求和重复计算了两次。

p.52式 (3-3)应为

Δ𝐻M = 𝑉M𝑛1𝜙2 (𝛿1 − 𝛿2)2

其中 𝑛1是溶剂（小分子）的摩尔数，𝜙2是溶质（聚合物）的体积分数。
p.61式 (3-20b)的两个等号所保留的高次项个数不同，第一个等号应该是约等号，第二个等号不成立。正

确的写法应是：由 ln (1 − 𝑥)的级数展开，式 (3-20a)可化为

Π = 𝑅𝑇
𝑉1

[𝜙2 +
𝜙22
2 + 𝜙32

3 + ⋯ + (1𝑥 − 1) 𝜙2 − 𝜒𝜙22]

= 𝑅𝑇
𝑉1

[ 1𝑥 𝜙2 + (12 − 𝜒) 𝜙22 +
𝜙32
3 + ⋯]

≈ 𝑅𝑇
𝑉1

[ 1𝑥 𝜙2 + (12 − 𝜒) 𝜙22]

p.68式 (3-34)的第二个式子应为
1

(1 − 𝜙2)2
− 2𝜒 = 0
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